#### OMEGA CHEMICAL SITE PRP ORGANIZED GROUP

1322 Scott Street, Suite 104 San Diego, CA 92106 (619)-546-8377 (619)-546-9980

e-mail: edm@demaximis.com

February 10, 2020

Julie Sullivan
Remedial Project Manager
United States Environmental Protection Agency
75 Hawthorne Street
San Francisco, California 94105

Subject: Quarterly Performance Evaluation Report, Fourth Quarter 2019

Full Scale On-Site Soil Remedy

Omega Chemical Superfund Site, Operable Unit 1, Whittier, California

Dear Ms. Sullivan:

Enclosed for your review is the Fourth Quarter 2019 Performance Evaluation Report for the Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site, Operable Unit 1, Whittier, California.

Should you have any questions, regarding the above, please contact me.

Sincerely,

Omega Chemical Site PRP Organized Group

Edwal Morling

Edward Modiano Project Coordinator

cc: Don Indermill, DTSC

Jaime Dinello, PE Project Manager

Jaime Dinello



#### **FEBRUARY 10, 2020**

# FULL SCALE ON-SITE SOIL REMEDY PERFORMANCE EVALUATION REPORT FOURTH QUARTER 2019 OMEGA CHEMICAL SUPERFUND SITE, OU-1

Prepared for:

Omega Chemical Site PRP Organized Group (OPOG)

Prepared by:

de maximis, inc. 1322 Scott Street, Suite 104 San Diego, CA 92106

# FULL-SCALE ON-SITE SOIL REMEDY OMEGA CHEMICAL SUPERFUND SITE, OU-1

# Quarterly Performance Evaluation Report Fourth Quarter 2019

#### **TABLE OF CONTENTS**

| Se | ection                                  | Page |
|----|-----------------------------------------|------|
| 1. | INTRODUCTION                            | 1    |
| 2. | OU-1 SVE SYSTEM OPERATIONS THIS QUARTER | 2    |
| 3. | SOIL GAS COMPLIANCE MONITORING          | 4    |
| 4. | INDOOR AIR COMPLIANCE MONITORING        | 4    |
| 5. | SUBMITTALS DURING THE QUARTER           | 5    |
| 6. | PLANNED ACTIVITIES                      | 5    |
| 7. | PROBLEMS OR ISSUES OF CONCERN           | 5    |
| 8. | REFERENCES                              | 6    |

#### **TABLES**

- Vapor Phase GAC Analytical Data Demonstrating Substantive Compliance with SCAQMD Regulations
- 2 Status of Indoor Air Sampling at Buildings Wholly or Partially within the OU-1 Phase 1a Boundary

#### **FIGURES**

- 1 OU-1 Location Map
- 2 OU-1 SVE System Location Map
- 3 OU-1 SVE System Cumulative Mass Removed
- 4 PCE Concentrations in Shallow Soil Gas Demonstrating Compliance with Cleanup Level (Not Included This Quarter)
- 5 TCE Concentrations in Shallow Soil Gas Demonstrating Compliance with Cleanup Level (Not Included This Quarter)
- 6 Vapor Phase GAC Influent Concentrations
- 7 Indoor Air Concentrations (Not Included This Quarter)

#### **ATTACHMENTS**

- A OU-1 SVE System Operational Data
- B Summary of VEW and DPE Concentrations and Operational Data
- C Summary of Vapor Monitoring Probe Concentrations and Vacuum
- D Other Soil Gas Data Collected This Quarter (Not Included This Quarter)
- E Field Forms
- F Laboratory Analytical Results
- G Data Validation Reports
- H Summary of Indoor Air and Ambient Air Concentrations (Not Included This Quarter)

# FULL-SCALE ON-SITE SOIL REMEDY OMEGA CHEMICAL SUPERFUND SITE, OU-1

# Quarterly Performance Evaluation Report Fourth Quarter 2019

#### 1. INTRODUCTION

This Quarterly Performance Evaluation Report (QPER) has been prepared on behalf of the Omega Chemical Site Potentially Responsible Parties Organized Group (OPOG) to comply with the October 6, 2010 Consent Decree No. 10-05051 (CD) between United States Environmental Protection Agency (USEPA) and OPOG (USEPA, 2010). The CD requires OPOG to design, construct, and operate a full-scale soil vapor extraction (SVE) and treatment system and perform associated monitoring to address vadose zone soil within Operable Unit 1 (OU-1). The CD Statement of Work satisfies the requirements of the 2008 OU-1 Record of Decision (ROD) (USEPA, 2008). Figure 1 shows the general location of OU-1, as well as the occupancy status of buildings within the operable unit. The locations of the OU-1 SVE system components, including the associated Vapor Extraction Wells (VEWs), the Dual Phase Extraction (DPE) wells, the treatment plant, and the associated Vapor Monitoring Probes (VMPs), are presented in Figure 2.

Remedial Action Objective (RAO) compliance monitoring includes the collection of soil gas and indoor air data within the OU-1 boundary. Current monitoring requirements are as follows:

- OU-1 SVE system operational data are collected to determine whether treated vapor
  emissions are substantively compliant with South Coast Air Quality Management District
  (SCAQMD) requirements as well as to conform to the requirements of the Draft OU-1
  SVE Operations, Maintenance, and Monitoring (OM&M) Manual (CDM Smith, 2018a).
  Note that this document is undergoing modification consistent with recent discussions
  with USEPA. These data are included in Section 2.
- Shallow soil gas data are collected semi-annually during the first and third quarters from specified VMPs in the shallow vadose zone (0 – 30 feet below ground surface [bgs]) to

show that concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) are declining in the vadose zone, making progress toward achieving the specified soil gas cleanup levels that are protective of indoor air (RAO #1) and will also ultimately result in achieving soil cleanup levels (RAO #2). These data are collected from VMPs and assessed in accordance with the USEPA-approved soil gas sampling memo (CDM Smith, 2018b). The USEPA-approved soil gas sampling memo specifies all required compliance monitoring for the OU-1 SVE system until the approval of the OM&M Manual. These data, if collected, are included in Section 3.

- Deep soil gas data are collected semi-annually during the first and third quarters from specified VMPs in the deep vadose zone (40 – 70 feet bgs) to show that deep soil gas concentrations are declining over time (RAO #3). These data are also collected and assessed in accordance with the USEPA-approved soil gas sampling memo (CDM Smith, 2018b). These data, if collected, are included in Section 3.
- Indoor air data are collected from within occupied OU-1 buildings to show that concentrations of PCE and TCE in indoor air are below acceptable risk levels (RAO #1). Indoor air compliance monitoring for 2019 is based on the 2019 Indoor Air Quality Sampling Plan (de maximis. 2019), which prescribes the sampling locations and structures to be sampled during the 2019 Annual (January) and Semi-Annual (July) monitoring events. These data, if collected, are included in Section 4.
- Soil concentration data in the shallow vadose zone (0 30 feet bgs) will be collected in the future after mutual agreement between USEPA and OPOG. This will occur after shallow soil gas concentrations remain below ROD cleanup levels subsequent to USEPA-approved rebound testing.

#### 2. OU-1 SVE SYSTEM OPERATIONS THIS QUARTER

The OU-1 SVE System functioned this quarter with minimal issues or downtime. Alarm testing occurred on November 11, 2019, with all switches and alarms found to be functioning as designed. In addition, leak testing of the VE-39S conveyance line was conducted on November 11, 2019. This testing was conducted as OPOG has been unable to collect a sample at this location recently to excess moisture. To complete this test, an inflatable plug was used to isolate the conveyance line at the wellhead and then the line was brought to pressure to see if line held



the injected air or if the pressure dissipated through a leak. Results of this test indicated that there is a leak in the VE-39S conveyance line. OPOG is currently evaluating options of address this leak.

Approximately 11.7 pounds of VOC mass were removed from soil gas this quarter, compared to 9.9 pounds removed in the previous quarter. Figure 3 shows the cumulative mass removed since 2010.

#### **VACUUM BLOWER**

As shown in Attachment A, Table A-1, the OU-1 SVE system functioned this quarter with an up time of approximately 100%.

#### VAPOR EXTRACTION WELLS (VEWs) AND DUAL PHASE EXTRACTION (DPE) WELLS

All OU-1 SVE system VEWs and DPE wells were mechanically functional during this quarter. VEW and DPE well operational data, including flow rate, total volatile organic compound (VOC) concentrations, as measured by photoionization detector (PID) readings and laboratory analyses (if analytical samples were collected), vacuum, temperature, relative humidity, and estimated mass removed per well during the quarter are presented in Attachment B, Table B-1. No VEW influent manifold valve adjustments are recommended this quarter.

#### **VAPOR MONTORING PROBES**

The extraction wells provided enough vacuum influence to continue to remove mass and mitigate vapor migration. Per the EPA-approved soil gas memo, vacuum/pressure monitoring at specified VMPs shall be conducted quarterly, and analytical monitoring shall be conducted semi-annually (typically first and third quarters) except for select VMPs which are monitored for both vacuum and analytical concentrations annually. A summary of the VMP vacuum monitoring collected this quarter are included in Attachment C (Tables C-1/Figure C-1 and Table C-2/Figure C-2 for shallow and deep VMPs respectively). Semi-annual VMP analytical monitoring was not conducted this quarter. Figures 4 and 5 are placeholders for presentations of concentrations of PCE and TCE measured during a quarter.

Though not collected this quarter, Attachment D serves as a placeholder for monitoring data collected from other VMPs not included in the EPA-approved soil gas memo.



#### TREATED VAPOR DISCHARGE

The OU-1 SVE system operated in accordance with treated vapor discharge limits and VGAC operational requirements. The VGAC changeout criteria were not triggered during this quarter (Attachment A). The criteria are currently based on the existing Health Risk Assessment (HRA, CDM Smith, 2015), which is currently being updated as part of the revised OU-1 SVE OM&M Manual. The most recent carbon changeout of the lead and lag vessels was completed on March 15, 2019.

Table 1 shows the VOC concentrations in the VGAC influent, midpoint, and effluent samples and effluent discharge limits. Figure 6 shows VGAC influent concentrations for PCE and TCE since 2010. Attachment A, Table A-1 shows the flow rate, temperature, and total VOC concentrations, as indicated by a PID. Figure A-1 shows selected parameters over time.

Operational field forms (for all monitoring discussed in this section) are provided in Attachment E. Analytical laboratory reports are provided in Attachment F. A summary of the results of the data quality assessment and data validation reports are provided in Attachment G.

#### 3. SOIL GAS COMPLIANCE MONITORING

Per the EPA-approved soil gas memo, semi-annual VMP analytical monitoring was not conducted this quarter.

#### 4. INDOOR AIR COMPLIANCE MONITORING

The occupancy status and current monitoring schedule for each building is summarized in Table 2. Indoor air sampling is generally only conducted in buildings that are occupied. Occupancy status is verified each quarter.

As discussed above, indoor air compliance monitoring is conducted during the Annual (January) and Semi-Annual (July) monitoring events. Thus, no routine indoor air monitoring was conducted during the fourth quarter. Figure 7, not included this quarter, is a placeholder to present indoor air monitoring results for PCE and TCE. Attachment H is a placeholder for a summary of indoor air monitoring results.

#### 5. SUBMITTALS DURING THE QUARTER

The following submittals were made this quarter as part of the OU-1 Full Scale On-site Soil Remedy:

- Full Scale On-site Soil Remedy QPER, Third Quarter 2019 (November 15, 2019)
- 2020 Indoor Air Quality Sampling Plan (November 26, 2019)

#### 6. PLANNED ACTIVITIES

Planned operational and monitoring activities scheduled for the next quarter include the following:

- Monthly vacuum, flow, temperature and PID monitoring at VEWs and DPE wells
- Quarterly vacuum monitoring and semi-annual analytical monitoring at VMPs
- Review of VEW, DPE well, and VMP data to assess the need for optimizing performance
- Monthly assessment of VGAC effectiveness and need for VGAC changeout
- Operational changes (i.e. manifold adjustments) noted in this report (if any)
- January Annual IAQ monitoring event per the submitted 2020 Indoor Air Quality
   Sampling Plan
- Quarterly performance reporting

#### 7. PROBLEMS OR ISSUES OF CONCERN

None.

#### 8. REFERENCES

- CDM. (2007). Final Human Health Risk Assessment for On-Site Soils
- CDM Smith. (2015). Memorandum: Treatment of Effluent from Groundwater Treatment System and Soil Vapor Extraction, Omega Chemical Superfund Site, Whittier, California 90602, February 26
- CDM Smith. (2018a). DRAFT Operable Unit 1 Soil Vapor Extraction System Operations, Maintenance, and Monitoring Manual, December 21.
- CDM Smith. (2018b). Revised 2018 Operable Unit 1 (OU-1) On-site Soil Remedy Soil Gas Monitoring, August 27
- de maximis, inc. (2019). 2019 Indoor Air Quality Sampling Plan, Omega Chemical Superfund Site. January 25
- USEPA. (2008). Record of Decision for OU-1 Soils.
- USEPA. (2010). Consent Decree Docket No. 10-05051, October 6

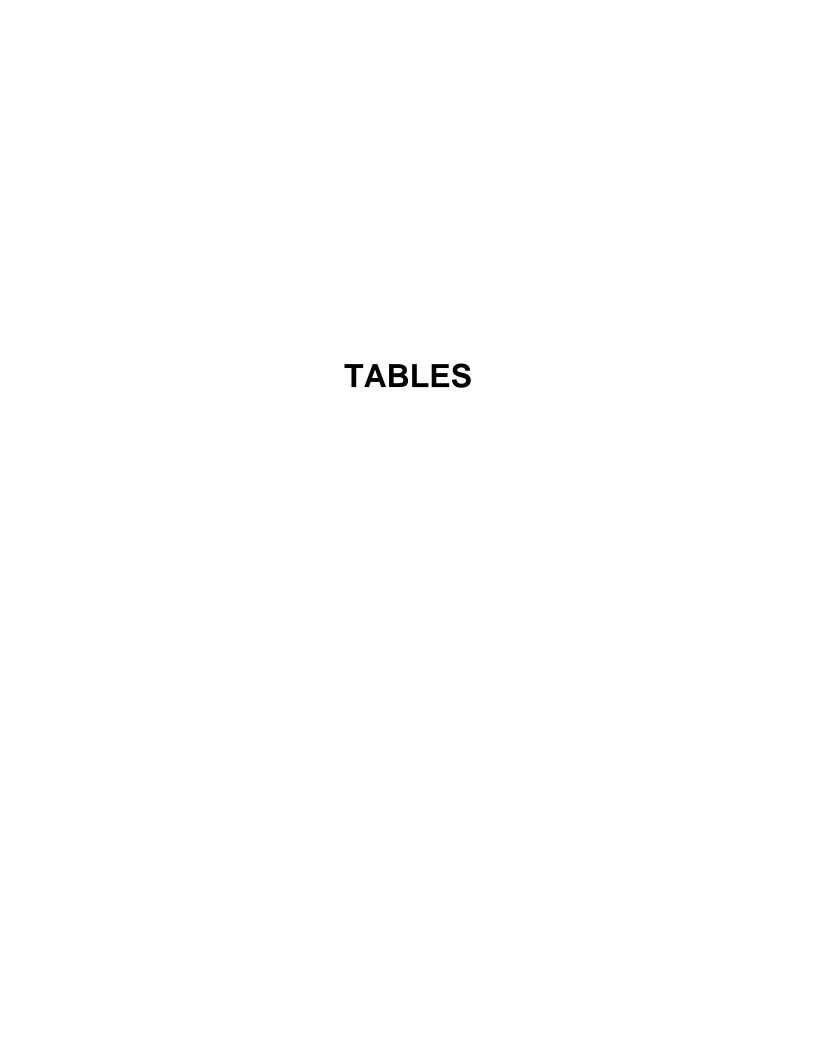



Table 1
Vapor Phase GAC Analytical Data Demonstrating Substantive Compliance With SCAQMD Regulations
OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site
Fourth Quarter 2019

| SCAQMD Chemical-S <sub>1</sub>     | oecific Effluent Li | mit <sup>1</sup> | 2,208 | 198   | 84    | 15    | 14    | 48    | 1,082 | 65    |
|------------------------------------|---------------------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sample Location                    | Sample Date         | Units            | PCE   | TCE   | VC    | 11DCA | 12DCA | CF    | MeC   | BEN   |
| OU-1 SVE GAC INFLUENT              | 10/1/2019           | ppbv             | 120   | 5.4   | 1.2 U | 1.2 U | 1.2 U | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC MIDPOINT              | 10/1/2019           | ppbv             | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC EFFLUENT <sup>2</sup> | 10/1/2019           | ppbv             | 1.1 U | 11 U  | 1.1 U |
| OU-1 SVE GAC INFLUENT              | 11/4/2019           | ppbv             | 160   | 5.8   | 1.3 U | 1.3 U | 1.3 U | 1.3 U | 13 U  | 1.3 U |
| OU-1 SVE GAC MIDPOINT              | 11/4/2019           | ppbv             | 1.2   | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC EFFLUENT <sup>2</sup> | 11/4/2019           | ppbv             | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC INFLUENT              | 12/3/2019           | ppbv             | 83    | 4.4   | 1.2 U | 1.2 U | 1.2 U | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC MIDPOINT              | 12/3/2019           | ppbv             | 1.2 U | 12 U  | 1.2 U |
| OU-1 SVE GAC EFFLUENT <sup>2</sup> | 12/3/2019           | ppbv             | 1.2 U | 12 U  | 1.2 U |
| Compliance with                    | Effluent Limits?    |                  | YES   |

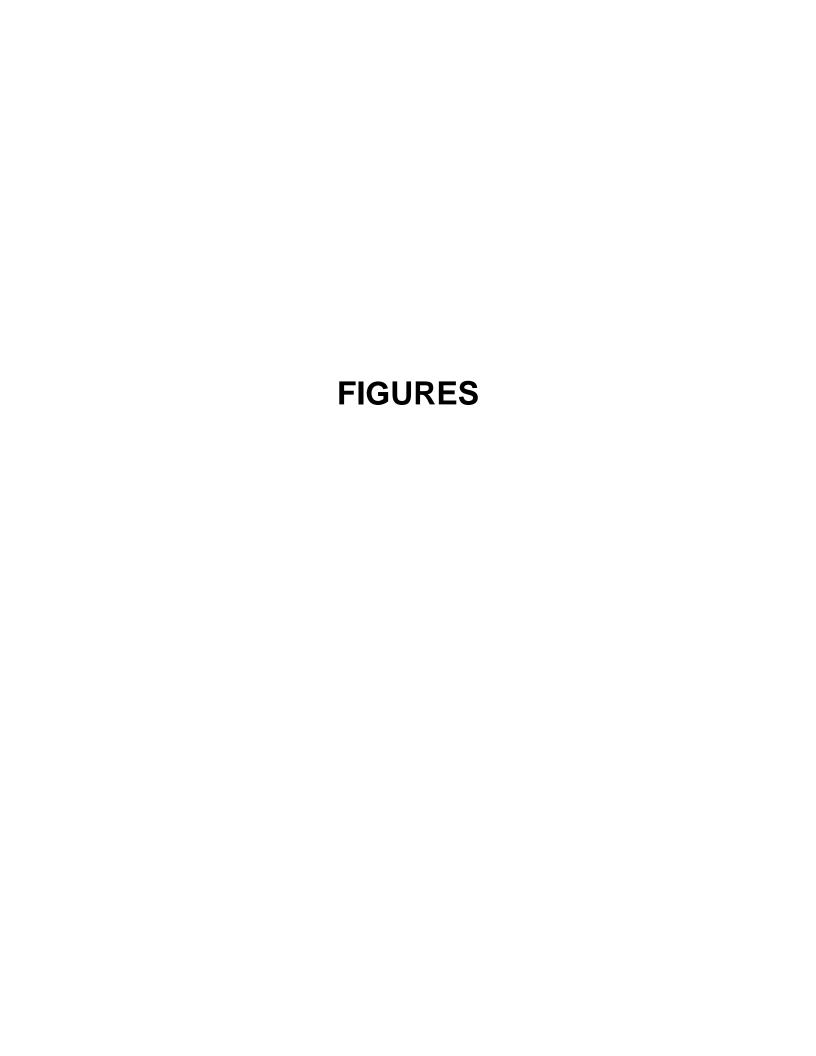
#### Notes:

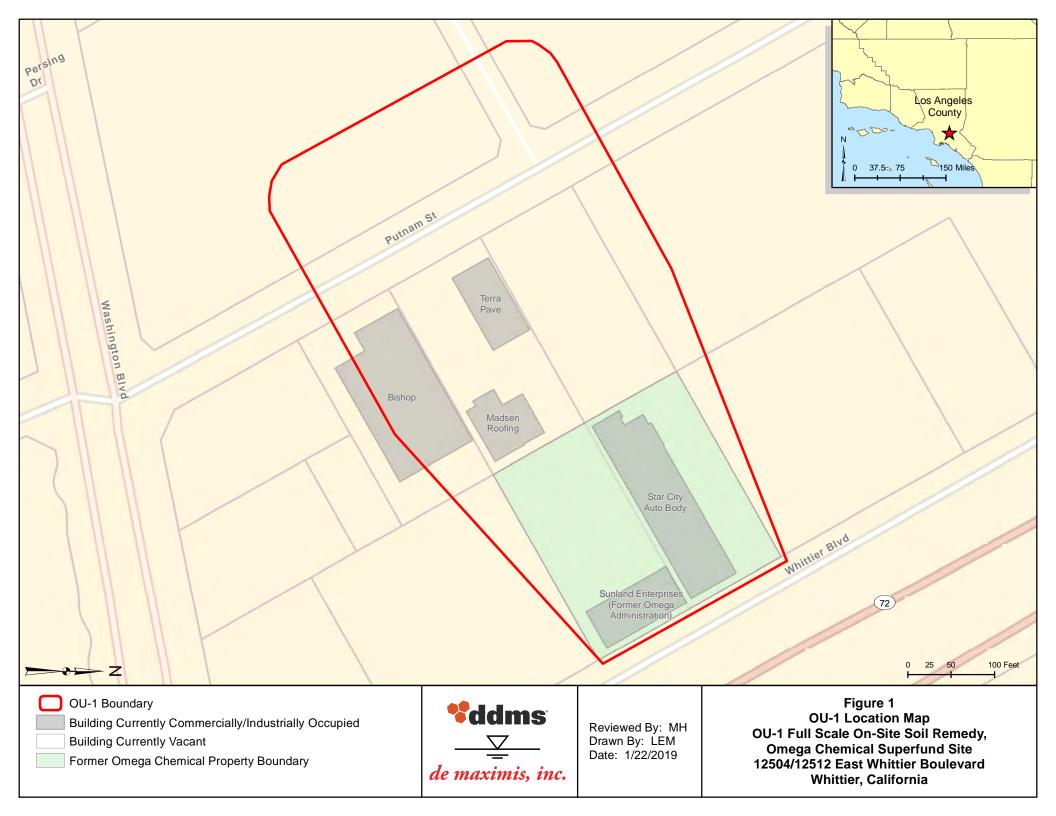
- 1. SCAQMD effluent limits are derived from the Health Risk Assessment (CDM Smith, 2015).
- 2. Bold text indicates vapor effluent results from the VGAC effluent required to meet SCAQMD HRA chemical specific limits shown in the table.
- OU-1 SVE GAC Influent = VOC-laden vapor sample collected at the influent to the lead VGAC vessel.
- OU-1 SVE GAC Midpoint = Partially treated vapor sample collected between the lead and lag VGAC vessels.
- OU-1 SVE GAC Effluent = Fully treated vapor sample collected at the effluent from the lag (polishing) VGAC vessel.
- U Not detected above reporting limit listed

PCE - Tetrachloroethene 12DCA - 1,2-Dichloroethane

TCE - Trichloroethene CF - Chloroform

VC - Vinyl Chloride MeC - Methylene Chloride


11DCA - 1,1-Dichloroethane BEN - Benzene


Table 2
Status of Indoor Air Sampling at Buildings Wholly or Partially within the OU-1 Phase 1a Boundary
OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site
Fourth Quarter 2019

| Building                                                   | Location<br>Designation        | Building<br>Occupancy | Vacancy<br>Status<br>Verification | Current<br>Monitoring<br>Status | Date Last<br>Sampled <sup>1</sup> | Next<br>Planned<br>Sampling<br>Date | Sampling Rationale                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|--------------------------------|-----------------------|-----------------------------------|---------------------------------|-----------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sunland<br>Enterprises<br>(Former Omega<br>Administration) | Within OU-1<br>Boundary        | Occupied              | Verified in person 4Q2019         | Annual                          | 1/17/2020                         | January 2021                        | - Sampled as part of Remedial Investigation - Building unoccupied between 2005 and 2018. The bulding is currently leased to Sunland Enterprises, Division of E&A Car Wash Systems - EPA has not requested indoor air sampling under the 2009 AOC - Under influence of soil vapor extraction since 2011 - Building was incorporated into the annual monitoring program proposed in the 2020 Indoor Air Quality Sampling Plan (submitted to EPA on November 26, 2019) |
| Bishop                                                     | Partly within<br>OU-1 Boundary | Occupied              | Verified in person 4Q2019         | Semi-Annual                     | 1/16/2020                         | July 2020                           | <ul> <li>Required indoor air sampling under the 2009 AOC</li> <li>Under influence of soil vapor extraction since 2010</li> <li>Reduced monitoring frequency from quarterly to semi-annual (approved by EPA in letter to OPOG on November 28, 2018).</li> </ul>                                                                                                                                                                                                      |
| Madsen Roofing                                             | Within OU-1<br>Boundary        | Partially<br>Occupied | Verified in person 4Q2019         | Annual                          | 1/17/2020                         | January 2021                        | - Required indoor air sampling under the 2009 AOC - Under influence of soil vapor extraction since 2010 - Reduced monitoring frequency from semi-annual to annual (approved by EPA in letter to OPOG on November 28, 2018).                                                                                                                                                                                                                                         |
| Star City Auto<br>Body                                     | Within OU-1<br>Boundary        | Occupied              | Verified in person 4Q2019         | Annual                          | 1/16/2020                         | January 2021                        | - Required indoor air sampling under the 2009 AOC - Under influence of soil vapor extraction since 2010 - Reduced monitoring frequency from semi-annual to annual (approved by EPA in letter to OPOG on November 28, 2018).                                                                                                                                                                                                                                         |
| Terra Pave                                                 | Within OU-1<br>Boundary        | Partially<br>Occupied | Verified in person 4Q2019         | Semi-Annual                     | 1/16/2020                         | July 2020                           | <ul> <li>Required indoor air sampling under the 2009 AOC</li> <li>Under influence of soil vapor extraction since 2010</li> <li>Reduced monitoring frequency from quarterly to semi-annual (approved by EPA in letter to OPOG on November 28, 2018).</li> </ul>                                                                                                                                                                                                      |

#### Notes:

<sup>1.</sup> The dates reflected in this column are from the January 2020 Annual sampling event which occurred prior to the submission of this report. These data will be included in the First Quarter 2020 Report.





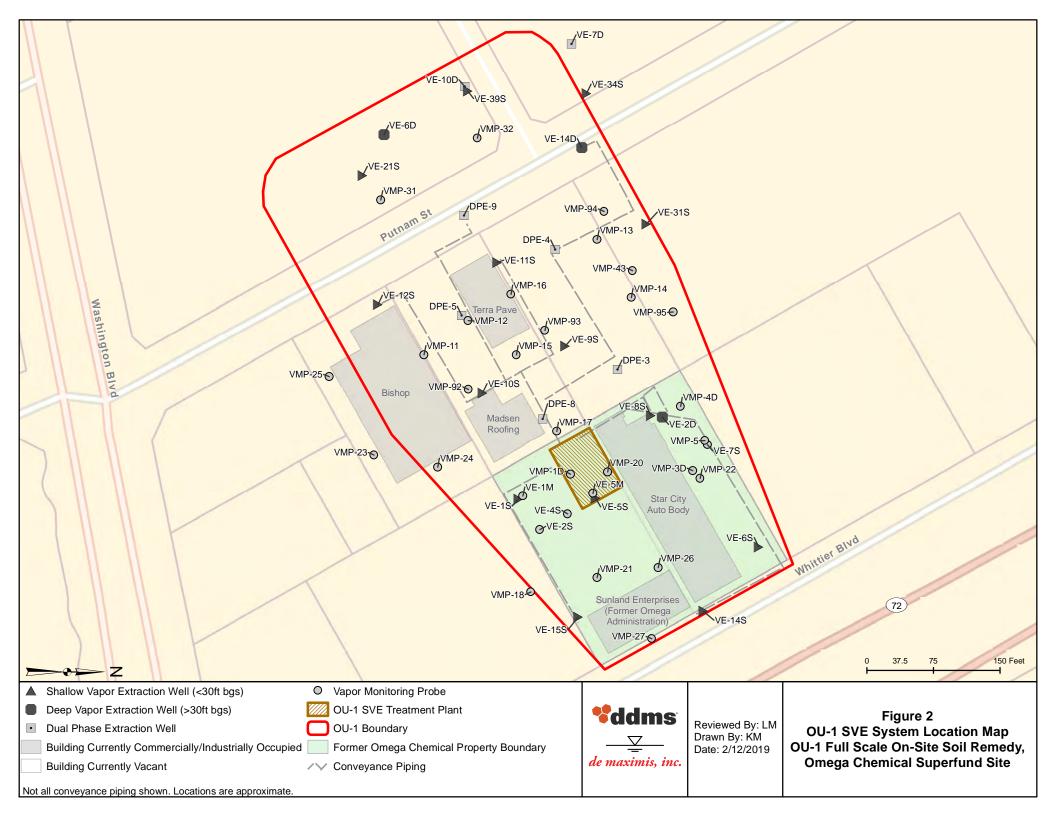



Figure 3
OU-1 SVE System Cumulative Mass Removed
OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site
Fourth Quarter 2019

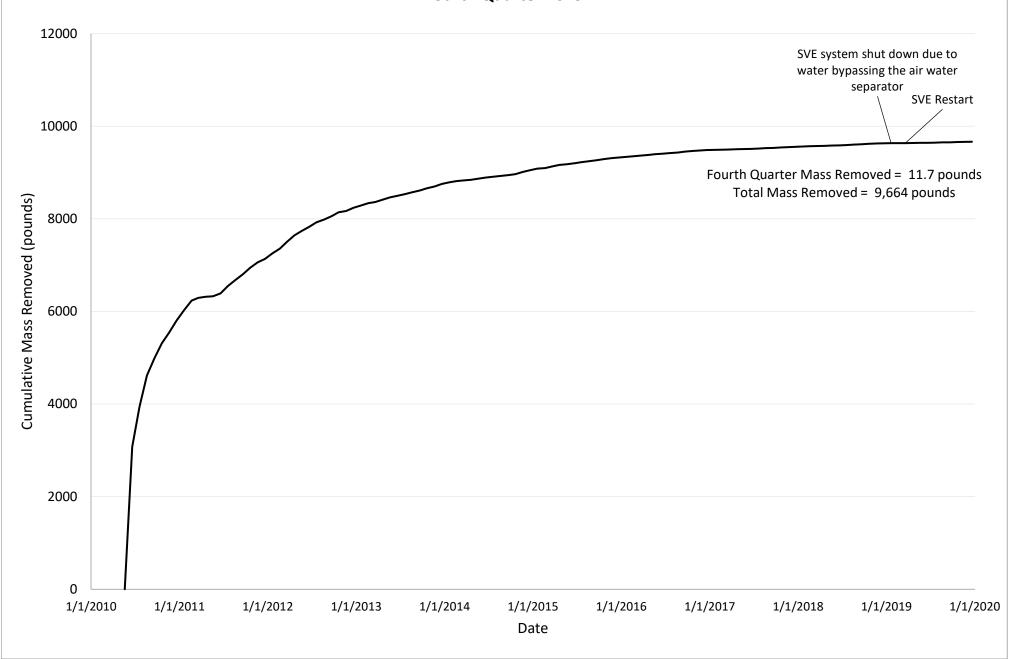
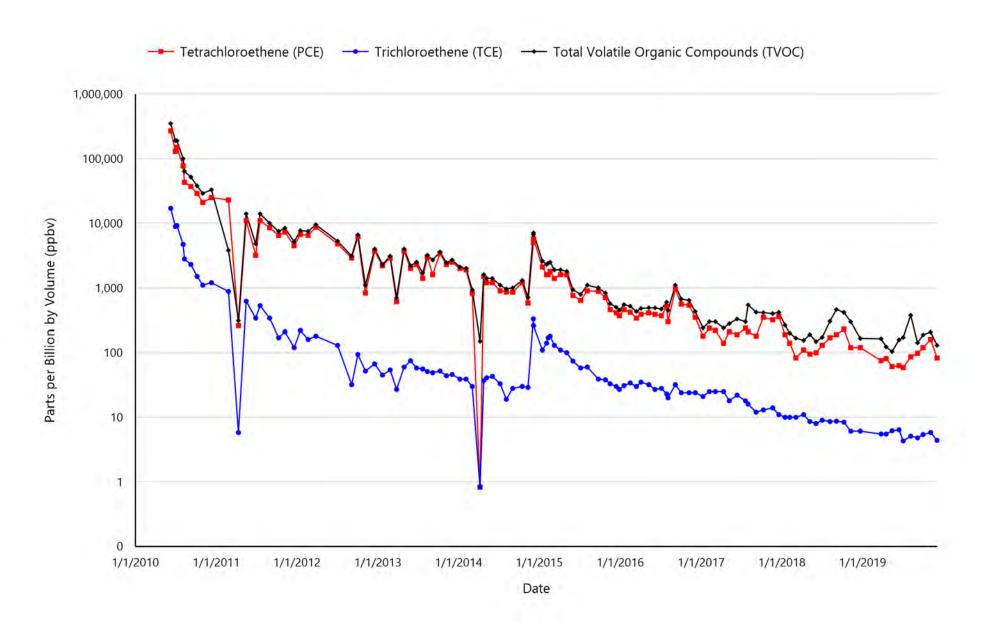




Figure 6
Vapor Phase GAC Influent Concentrations
OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site
Fourth Quarter 2019



### **ATTACHMENT A**

**OU-1 SVE System Operational Data** 

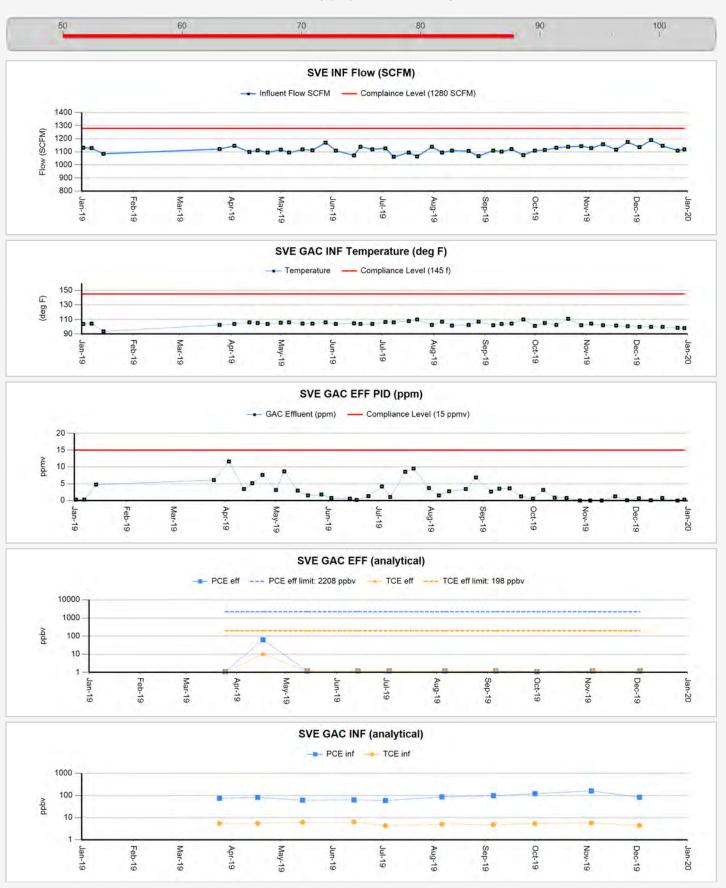
#### Attachment A, Table A-1

# OU-1 SVE System Operational Data Demonstrating Substantive Compliance With SCAQMD Operational Limits OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019

|            | SCAQMD                       | Limit <sup>4</sup> |                                      | 1280                                  | 145                                           |                                               |                                               |                                               | 15                                            |                                             |                                                |                                         |
|------------|------------------------------|--------------------|--------------------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------|
| HR         | RA Changeo                   | ut Crite           | ria                                  |                                       |                                               |                                               |                                               | 50 <sup>3</sup>                               |                                               | 90 <sup>3</sup>                             |                                                |                                         |
| Date       | Interval<br>Run Time<br>(hr) | Up<br>Time⁵<br>(%) | Influent Vapor Relative Humidity (%) | Influent Vapor<br>Flow Rate<br>(SCFM) | VGAC<br>Influent Vapor<br>Temperature<br>(°F) | VGAC<br>Effluent Vapor<br>Temperature<br>(°F) | VGAC<br>Influent PID<br>Measurement<br>(ppmv) | VGAC<br>Midpoint PID<br>Measurement<br>(ppmv) | VGAC<br>Effluent PID<br>Measurement<br>(ppmv) | Lead VGAC<br>Efficiency <sup>1</sup><br>(%) | Overall VGAC<br>Efficiency <sup>2</sup><br>(%) | Mass Removed<br>(lbs, monthly<br>total) |
| 10/1/2019  | 140                          |                    | 55.0                                 | 1110                                  | 101.4                                         | 91.7                                          | 5.8                                           | 0.4                                           | 0.5                                           | 93                                          | 91                                             |                                         |
| 10/7/2019  | 144                          | 100                | 53.5                                 | 1114                                  | 105.1                                         | 97.7                                          | 14.7                                          | 7.1                                           | 3.1                                           | 51                                          | 79                                             |                                         |
| 10/14/2019 | 168                          | 100                | 58.3                                 | 1131                                  | 102.7                                         | 94.5                                          | 4.1                                           | 0.6                                           | 0.8                                           | 85                                          | 80                                             | 4.5                                     |
| 10/21/2019 | 169                          | 100                | 35.8                                 | 1138                                  | 111.2                                         | 102.1                                         | 6.3                                           | 2.6                                           | 0.8                                           | 59                                          | 87                                             |                                         |
| 10/29/2019 | 191                          | 99                 | 53.3                                 | 1144                                  | 102.3                                         | 90.6                                          | 2.8                                           | 0.0                                           | 0.0                                           | 100                                         | 100                                            |                                         |
| 11/4/2019  | 145                          | 100                | 45.3                                 | 1128                                  | 104.3                                         | 96.4                                          | 4.1                                           | 0.0                                           | 0.0                                           | 100                                         | 100                                            |                                         |
| 11/11/2019 | 167                          | 100                | 62.5                                 | 1158                                  | 102.1                                         | 92.1                                          | 9.1                                           | 0.2                                           | 0.0                                           | 98                                          | 100                                            | 3.9                                     |
| 11/19/2019 | 191                          | 100                | 42.6                                 | 1117                                  | 101.5                                         | 92.8                                          | 8.2                                           | 2.1                                           | 1.2                                           | 74                                          | 85                                             | 3.9                                     |
| 11/26/2019 | 170                          | 100                | 37.3                                 | 1174                                  | 100.7                                         | 90.8                                          | 15.8                                          | 0.4                                           | 0.1                                           | 98                                          | 99                                             |                                         |
| 12/3/2019  | 169                          | 100                | 67.2                                 | 1136                                  | 100.1                                         | 81.9                                          | 3.1                                           | 0.2                                           | 0.7                                           | 93                                          | 77                                             |                                         |
| 12/10/2019 | 166                          | 99                 | 67.9                                 | 1189                                  | 100.0                                         | 82.3                                          | 3.0                                           | 0.2                                           | 0.1                                           | 94                                          | 98                                             |                                         |
| 12/17/2019 | 170                          | 100                | 36.8                                 | 1145                                  | 99.8                                          | 89.9                                          | 6.3                                           | 0.3                                           | 0.7                                           | 95                                          | 88                                             | 3.3                                     |
| 12/26/2019 | 215                          | 99                 | 71.1                                 | 1110                                  | 98.4                                          | 73.0                                          | 4.6                                           | 0.0                                           | 0.0                                           | 99                                          | 100                                            |                                         |
| 12/30/2019 | 96                           | 100                | 47.7                                 | 1118                                  | 98.1                                          | 79.8                                          | 5.0                                           | 0.6                                           | 0.3                                           | 89                                          | 94                                             |                                         |
| 4th Qtr 2  | 019 Average                  | 100                | 52.5                                 | 1137                                  | 102.0                                         | 89.7                                          | 6.6                                           | 1.1                                           | 0.6                                           | 84                                          | 91                                             | 3.9                                     |
| 220        |                              |                    |                                      |                                       |                                               |                                               |                                               |                                               | Total Mass Rem                                | noved 4th Qtr 2019                          | 11.7                                           |                                         |
| Compliance | with SCAQ                    | MD Lim             | its?                                 | YES                                   | YES                                           |                                               |                                               |                                               | YES                                           |                                             |                                                |                                         |
| Carbon Cha | ngeout Req                   | uired Th           | nis Qtr?                             |                                       |                                               |                                               |                                               | NO                                            |                                               | NO                                          |                                                |                                         |

#### Notes:

°F = degrees Fahrenheit VGAC = vapor phase granular activated carbon PID = photoionization detector ppmv = parts per million by volume as hexane


SCFM = Standard Cubic Feet per Minute Hr = Hour
Qtr = quarter lbs = pounds

SCAQMD = South Coast Air Quality Management District

- 1. Lead VGAC efficiency is calculated by the PID readings between the influent and midpoint.
- 2. Overall VGAC efficiency is calculated by the PID readings between the influent and effluent.
- 3. Carbon changeouts are required when the efficiency across the lead VGAC vessel drops below 90% AND the midpoint concentration exceeds 50 ppmv as hexane, by PID during the same sampling event.
- 4. Limits are derived from the Health Risk Assessment (CDM Smith, 2015a).
- 5. Up Time is calculated as the percentage of time the system is operating between the date listed and the previous measurement date.

### Attachment A, Figure A-1 OU-1 SVE System Operational Data (Rolling One Year)

% Efficiency (PID) Across GAC Primary



#### **Kyle King**

From: Reed, Alesandra F. <reedaf@cdmsmith.com>

**Sent:** Monday, February 03, 2020 10:14 AM

To: Kyle King; Laura Millan
Cc: Jaime Dinello; Bamer, Jeffrey

**Subject:** OU-1 SVE GAC evaluation October 2019

**Attachments:** Omega OU-1 SVE GAC Changeout Assessment\_October 2019.xlsx

#### \*\* WARNING EXTERNAL SENDER \*\*

#### Team,

We evaluated the performance of the GAC used by the OU-1 SVE system for the month of October 2019, relative to the conditions listed in the Health Risk Assessment (HRA) (CDM Smith 2015). These conditions must be met to remain in substantive compliance with SCAQMD requirements.

During the month of October, the OU-1 SVE system met the conditions presented in the HRA and is therefore substantively compliant:

- None of the toxic air contaminants listed in Condition #14 of the HRA were detected in the effluent above their respective effluent limit.
- The OU-1 SVE system did not meet the two criteria for replacement of the lead GAC vessel (listed under Condition #12 of the HRA), and therefore no GAC replacement was required.
- No other carcinogenic air contaminants beyond those listed in Condition #14 of the HRA were detected in effluent above 10 ppbv, and therefore per Condition #16, no toxic risk assessment was required.

We also evaluated all the analytical and PID data and, based on our professional judgement, determined that a voluntary changeout of the lead vessel GAC was not needed.

| OU-1 SVE GAC Assessment – Based on | OU-1 SVE GAC Assessment – Based on Samples Collected October 1, 2019 |           |            |                          |                             |  |  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------|-----------|------------|--------------------------|-----------------------------|--|--|--|--|--|--|--|
|                                    |                                                                      | Concentra | ation (ppb | <i>ı</i> )               |                             |  |  |  |  |  |  |  |
| Parameter                          | Influent                                                             | Midpoint  | Effluent   | HRA<br>Effluent<br>Limit | Below<br>2015 HRA<br>Limit? |  |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA)        | 6.5                                                                  | ND        | ND         | 34                       | Yes                         |  |  |  |  |  |  |  |
| 1,1-Dichloroethane                 | ND                                                                   | ND        | ND         | 15                       | Yes                         |  |  |  |  |  |  |  |
| 1,1-Dichloroethene                 | 2.6                                                                  | 2.3       | 2          | 1,243                    | Yes                         |  |  |  |  |  |  |  |
| 1,2-Dichloroethane                 | ND                                                                   | ND        | ND         | 14                       | Yes                         |  |  |  |  |  |  |  |
| Benzene                            | ND                                                                   | ND        | ND         | 65                       | Yes                         |  |  |  |  |  |  |  |
| Carbon disulfide                   | ND                                                                   | ND        | ND         | 1,007                    | Yes                         |  |  |  |  |  |  |  |
| Chloroform                         | ND                                                                   | ND        | ND         | 48                       | Yes                         |  |  |  |  |  |  |  |
| Freon 11                           | 1.2                                                                  | 1.6       | 2.3        | 1,801                    | Yes                         |  |  |  |  |  |  |  |
| Freon 113                          | 6.2                                                                  | 1.8       | ND         | 9,799                    | Yes                         |  |  |  |  |  |  |  |
| Freon 12                           | ND                                                                   | ND        | ND         | 775                      | Yes                         |  |  |  |  |  |  |  |
| Isopropyl Alcohol (Isopropanol)    | ND                                                                   | ND        | ND         | 60                       | Yes                         |  |  |  |  |  |  |  |
| Methyl ethyl ketone                | 46                                                                   | 43        | 56         | 75                       | Yes                         |  |  |  |  |  |  |  |
| Methylene chloride                 | ND                                                                   | ND        | ND         | 1,082                    | Yes                         |  |  |  |  |  |  |  |

| o-Xylene                       | ND  | ND | ND | 21     | Yes |
|--------------------------------|-----|----|----|--------|-----|
| Tetrachloroethene (PCE)        | 120 | ND | ND | 2,208  | Yes |
| TNMOC ref. to Heptane (MW=100) | 470 | 94 | 92 | 17,405 | Yes |
| Toluene                        | ND  | ND | ND | 47     | Yes |
| Trichloroethene (TCE)          | 5.4 | ND | ND | 198    | Yes |
| Vinyl chloride                 | ND  | ND | ND | 84     | Yes |

Please let us know if you have any questions or wish to discuss these data further.

Thanks! Alesandra

#### Alesandra Reed, PE

Environmental Engineer CDM Smith 555 17<sup>th</sup> Street, Suite 500, Denver, CO 80202 (cell) 352.222.2583, (office) 303.383.2475



#### **Kyle King**

From: Reed, Alesandra F. <reedaf@cdmsmith.com>

Sent: Monday, February 03, 2020 10:28 AM

**To:** Kyle King; Laura Millan

**Subject:** Omega OU-1 SVE November GAC Evaluation **Attachments:** OU-1 SVE GAC Assessment\_November 2019.xlsx

#### \*\* WARNING EXTERNAL SENDER \*\*

#### Team,

We evaluated the performance of the GAC used by the OU-1 SVE system for the month of November 2019, relative to the conditions listed in the Health Risk Assessment (HRA) (CDM Smith 2015). These conditions must be met to remain in substantive compliance with SCAQMD requirements.

During the month of November, the OU-1 SVE system met the conditions presented in the HRA and was therefore substantively compliant:

- None of the toxic air contaminants listed in Condition #14 of the HRA were detected in the effluent above their respective effluent limit.
- The OU-1 SVE system did not meet the two criteria for replacement of the lead GAC vessel (listed under Condition #12 of the HRA), and therefore no GAC replacement was required.
- No other carcinogenic air contaminants beyond those listed in Condition #14 of the HRA were detected in effluent above 10 ppbv, and therefore per Condition #16, no toxic risk assessment was required.

We also evaluated all the analytical and PID data and, based on our professional judgement, determined that a voluntary changeout of the lead vessel GAC was not needed.

| OU-1 SVE GAC Assessment – Based on | Samples Collect | ed Novemb | er 4, 2019 |                          | 1                           |
|------------------------------------|-----------------|-----------|------------|--------------------------|-----------------------------|
|                                    |                 | Concentr  | ation (ppb | <u>/)</u>                |                             |
| Parameter                          | Influent        | Midpoint  | Effluent   | HRA<br>Effluent<br>Limit | Below<br>2015 HRA<br>Limit? |
| 1,1,1-Trichloroethane (TCA)        | 8.6             | ND        | ND         | 34                       | Yes                         |
| 1,1-Dichloroethane                 | ND              | ND        | ND         | 15                       | Yes                         |
| 1,1-Dichloroethene                 | 2.6             | 2.7       | 2.2        | 1,243                    | Yes                         |
| 1,2-Dichloroethane                 | ND              | ND        | ND         | 14                       | Yes                         |
| Benzene                            | ND              | ND        | ND         | 65                       | Yes                         |
| Carbon disulfide                   | ND              | ND        | ND         | 1,007                    | Yes                         |
| Chloroform                         | ND              | ND        | ND         | 48                       | Yes                         |
| Freon 11                           | 1.4             | 1.8       | 2.2        | 1,801                    | Yes                         |
| Freon 113                          | 6               | 1.5       | ND         | 9,799                    | Yes                         |
| Freon 12                           | ND              | ND        | ND         | 775                      | Yes                         |
| Isopropyl Alcohol (Isopropanol)    | ND              | ND        | ND         | 60                       | Yes                         |
| Methyl ethyl ketone                | ND              | ND        | 68         | 75                       | Yes                         |
| Methylene chloride                 | ND              | ND        | ND         | 1,082                    | Yes                         |
| o-Xylene                           | ND              | ND        | ND         | 21                       | Yes                         |

| Tetrachloroethene (PCE)        | 160 | 1.2 | ND  | 2,208  | Yes |
|--------------------------------|-----|-----|-----|--------|-----|
| TNMOC ref. to Heptane (MW=100) | 700 | 32  | 280 | 17,405 | Yes |
| Toluene                        | ND  | ND  | ND  | 47     | Yes |
| Trichloroethene (TCE)          | 5.8 | ND  | ND  | 198    | Yes |
| Vinyl chloride                 | ND  | ND  | ND  | 84     | Yes |

Please let us know if you have any questions or wish to discuss these data further.

Thanks! Alesandra

#### Alesandra Reed, PE

Environmental Engineer CDM Smith 555 17<sup>th</sup> Street, Suite 500, Denver, CO 80202 (cell) 352.222.2583, (office) 303.383.2475



#### **Kyle King**

From: Reed, Alesandra F. <reedaf@cdmsmith.com>

**Sent:** Monday, February 03, 2020 10:17 AM

To: Kyle King; Laura Millan
Cc: Jaime Dinello; Bamer, Jeffrey

**Subject:** OU-1 SVE GAC evaluation December 2019

**Attachments:** Omega OU-1 SVE GAC Changeout Assessment\_Dec 2019.xlsx

#### \*\* WARNING EXTERNAL SENDER \*\*

#### Team,

We evaluated the performance of the GAC used by the OU-1 SVE GAC system for the month of December 2019, relative to the conditions listed in the Health Risk Assessment (HRA) (CDM Smith 2015). These conditions must be met to remain in substantive compliance with SCAQMD requirements.

During the month of December, the SVE GAC system met the conditions presented in the HRA and is therefore substantively compliant:

- None of the toxic air contaminants listed in Condition #14 of the HRA were detected in the effluent above their respective effluent limit, as summarized in the table below.
- The SVE GAC system met the two criteria for replacement of the lead GAC vessel (listed under Condition #12 of the HRA).
- No other carcinogenic air contaminants beyond those listed in Condition #14 of the HRA were detected in effluent above 10 ppbv, and therefore per Condition #16, no toxic risk assessment was required.

We also evaluated all the analytical and PID data and, based on our professional judgement, determined that a voluntary changeout of the lead vessel GAC was not needed.

| OU-1 SVE GAC Assessment – Based on Samp | OU-1 SVE GAC Assessment – Based on Samples Collected December 3, 2019 |          |            |                          |                          |  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------|----------|------------|--------------------------|--------------------------|--|--|--|--|--|--|
|                                         |                                                                       | Concentr | ation (ppb | <u>()</u>                |                          |  |  |  |  |  |  |
| Parameter                               | Influent                                                              | Midpoint | Effluent   | HRA<br>Effluent<br>Limit | Below 2015<br>HRA Limit? |  |  |  |  |  |  |
| 1,1,1-Trichloroethane (TCA)             | 8.6                                                                   | ND       | ND         | 34                       | Yes                      |  |  |  |  |  |  |
| 1,1-Dichloroethane                      | ND                                                                    | ND       | ND         | 15                       | Yes                      |  |  |  |  |  |  |
| 1,1-Dichloroethene                      | 2.2                                                                   | 2.1      | 2.8        | 1,243                    | Yes                      |  |  |  |  |  |  |
| 1,2-Dichloroethane                      | ND                                                                    | ND       | ND         | 14                       | Yes                      |  |  |  |  |  |  |
| Benzene                                 | ND                                                                    | ND       | ND         | 65                       | Yes                      |  |  |  |  |  |  |
| Carbon disulfide                        | ND                                                                    | ND       | ND         | 1,007                    | Yes                      |  |  |  |  |  |  |
| Chloroform                              | ND                                                                    | ND       | ND         | 48                       | Yes                      |  |  |  |  |  |  |
| Freon 11                                | 1.5                                                                   | 1.5      | 2.2        | 1,801                    | Yes                      |  |  |  |  |  |  |
| Freon 113                               | 5.9                                                                   | 1.8      | 1.4        | 9,799                    | Yes                      |  |  |  |  |  |  |
| Freon 12                                | ND                                                                    | ND       | ND         | 775                      | Yes                      |  |  |  |  |  |  |
| Isopropyl Alcohol (Isopropanol)         | ND                                                                    | ND       | ND         | 60                       | Yes                      |  |  |  |  |  |  |
| Methyl ethyl ketone                     | 17                                                                    | 12       | 14         | 75                       | Yes                      |  |  |  |  |  |  |
| Methylene chloride                      | ND                                                                    | ND       | ND         | 1,082                    | Yes                      |  |  |  |  |  |  |

| o-Xylene                       | ND  | ND | ND | 21     | Yes |
|--------------------------------|-----|----|----|--------|-----|
| Tetrachloroethene (PCE)        | 83  | ND | ND | 2,208  | Yes |
| TNMOC ref. to Heptane (MW=100) | 420 | 41 | 54 | 17,405 | Yes |
| Toluene                        | ND  | ND | ND | 47     | Yes |
| Trichloroethene (TCE)          | 4.4 | ND | ND | 198    | Yes |
| Vinyl chloride                 | ND  | ND | ND | 84     | Yes |

Please let us know if you have any questions or wish to discuss these data further.

#### Thanks!

#### Alesandra Reed, PE Environmental Engineer CDM Smith 555 17<sup>th</sup> Street, Suite 500, Denver, CO 80202

(cell) 352.222.2583, (office) 303.383.2475



### **ATTACHMENT B**

Summary of VEW and DPE Concentrations and Operational Data

#### Attachment B, Table B-1

# VEW / DPE Quarterly Operational Summary and Calculated Mass Removed OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019

| Location | Measurement<br>Date | Shallow /<br>Deep | Flow<br>(SCFM) | PID<br>(ppmv) | Analytical Total VOCs <sup>2</sup> (ug/m3) | Temperature<br>(deg. F) | Vacuum<br>(in H₂O, gauge) | Relative<br>Humidity<br>(%) | Calculated Mass<br>Removed <sup>1</sup><br>(lbs) |
|----------|---------------------|-------------------|----------------|---------------|--------------------------------------------|-------------------------|---------------------------|-----------------------------|--------------------------------------------------|
| VE-1S    | 10/1/2019           | SHALLOW           | 18.0           | 0.4           |                                            | 86.9                    | -18.0                     | 41.2                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 20.0           | 1.3           |                                            | 88.7                    | -16.0                     | 16.2                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 17.0           | 0.0           | 1                                          | 74.3                    | -20.0                     | 58.1                        |                                                  |
| VE-5S    | 10/1/2019           | SHALLOW           | 32.0           | 0.5           |                                            | 91.2                    | -35.0                     | 30.1                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 36.0           | 0.1           |                                            | 95.4                    | -60.0                     | 14.7                        |                                                  |
|          | 12/3/2019           | SHALLOW           |                | 0.0           |                                            | 75.9                    | -68.0                     | 44.3                        |                                                  |
| VE-6S    | 10/1/2019           | SHALLOW           | 66.0           | 0.4           |                                            | 90.8                    | -20.0                     | 31.7                        |                                                  |
|          | 11/4/2019           | SHALLOW           |                | 0.0           |                                            | 94.5                    | -36.0                     | 10.6                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 86.0           | 0.0           |                                            | 75.8                    | -26.0                     | 42.7                        |                                                  |
| VE-8S    | 10/1/2019           | SHALLOW           | 184.0          | 6.0           |                                            | 89.6                    | -35.0                     | 30.2                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 223.0          | 1.5           |                                            | 92.3                    | -33.0                     | 15.1                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 178.0          | 0.0           |                                            | 76.0                    | -45.0                     | 44.0                        | 7                                                |
| VE-9S    | 10/1/2019           | SHALLOW           | 44.0           | 0.3           |                                            | 88.9                    | -35.5                     | 34.6                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 55.0           | 0.6           |                                            | 89.4                    | -38.0                     | 12.7                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 46.0           | 0.0           |                                            | 74.2                    | -45.0                     | 48.5                        |                                                  |
| VE-10S   | 10/1/2019           | SHALLOW           | 31.0           | 1.5           |                                            | 89.7                    | -36.0                     | 33.9                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 38.0           | 0.4           |                                            | 90.8                    | -36.0                     | 13.5                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 79.0           | 0.0           |                                            | 76.2                    | -40.0                     | 45.5                        |                                                  |
| VE-11S   | 10/1/2019           | SHALLOW           | 97.0           | 0.4           |                                            | 90.9                    | -33.0                     | 32.1                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 122.0          | 0.0           |                                            | 93.3                    | -27.0                     | 15.3                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 75.0           | 0.0           | 1                                          | 75.7                    | -34.0                     | 46.1                        | 1                                                |
| VE-12S   | 10/1/2019           | SHALLOW           | 31.0           | 0.0           |                                            | 89.7                    | -31.0                     | 35.2                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 39.0           | 0.0           |                                            | 90.4                    | -32.0                     | 11.5                        |                                                  |
|          | 12/3/2019           | SHALLOW           | 43.0           | 2.1           | 1                                          | 75.0                    | -40.0                     | 51.7                        |                                                  |
| VE-14S   | 10/14/2019          | SHALLOW           | 41.0           | 4.4           |                                            | 79.1                    | -11.0                     | 48.3                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 38.0           | 0.7           |                                            | 92.8                    | -14.0                     | 17.4                        |                                                  |
|          | 12/3/2019           | SHALLOW           |                |               | 1                                          |                         |                           |                             | 1                                                |
| VE-15S   | 10/14/2019          | SHALLOW           | 23.0           | 3.7           |                                            | 78.1                    | -30.0                     | 49.0                        |                                                  |
|          | 11/4/2019           | SHALLOW           | 27.0           | 0.1           |                                            | 89.0                    | -30.0                     | 12.3                        |                                                  |
|          | 12/3/2019           | SHALLOW           |                |               |                                            |                         |                           |                             |                                                  |

#### Attachment B, Table B-1

# VEW / DPE Quarterly Operational Summary and Calculated Mass Removed OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019

| Location | Measurement<br>Date | Shallow /<br>Deep | Flow<br>(SCFM) | PID<br>(ppmv) | Analytical Total VOCs <sup>2</sup> (ug/m3) | Temperature<br>(deg. F) | Vacuum<br>(in H₂O, gauge) | Relative<br>Humidity<br>(%) | Calculated Mass<br>Removed <sup>1</sup><br>(lbs) |
|----------|---------------------|-------------------|----------------|---------------|--------------------------------------------|-------------------------|---------------------------|-----------------------------|--------------------------------------------------|
| DPE-3    | 10/1/2019           | DEEP              | 104.0          | 13.8          |                                            | 88.4                    | -32.0                     | 32.6                        |                                                  |
|          | 11/4/2019           | DEEP              | 108.0          | 9.1           |                                            | 87.2                    | -32.0                     | 9.5                         |                                                  |
|          | 12/3/2019           | DEEP              | 146.0          | 0.7           |                                            | 73.8                    | -40.0                     | 41.7                        |                                                  |
| DPE-4    | 10/1/2019           | DEEP              | 80.0           | 1.0           |                                            | 88.2                    | -18.0                     | 35.1                        |                                                  |
|          | 11/4/2019           | DEEP              | 87.0           | 0.3           |                                            | 86.2                    | -18.0                     | 13.6                        |                                                  |
|          | 12/3/2019           | DEEP              | 86.0           | 0.0           |                                            | 73.1                    | -22.0                     | 52.3                        |                                                  |
| DPE-5    | 10/1/2019           | DEEP              | 95.0           | 1.4           |                                            | 86.6                    | -38.0                     | 28.7                        |                                                  |
|          | 11/4/2019           | DEEP              | 100.0          | 0.4           |                                            | 82.9                    | -38.0                     | 15.1                        | ]                                                |
|          | 12/3/2019           | DEEP              | 102.0          | 0.0           |                                            | 72.3                    | -44.0                     | 47.8                        | 1                                                |
| DPE-8    | 10/1/2019           | DEEP              | 74.0           | 1.8           |                                            | 88.4                    | -26.0                     | 28.2                        |                                                  |
|          | 11/4/2019           | DEEP              | 74.0           | 0.7           |                                            | 83.2                    | -24.0                     | 20.2                        |                                                  |
|          | 12/3/2019           | DEEP              | 85.0           | 0.0           | 1                                          | 71.0                    | -30.0                     | 52.5                        |                                                  |
| DPE-9    | 10/1/2019           | DEEP              | 81.0           | 1.1           |                                            | 86.6                    | -20.0                     | 42.4                        |                                                  |
|          | 11/4/2019           | DEEP              | 82.0           | 0.4           |                                            | 84.0                    | -20.0                     | 27.9                        |                                                  |
|          | 12/3/2019           | DEEP              | 85.0           | 0.0           | 1                                          | 70.8                    | -36.0                     | 58.1                        |                                                  |
| VE-2D    | 10/1/2019           | DEEP              | 77.0           | 144.3         |                                            | 89.7                    | -35.0                     | 30.9                        |                                                  |
|          | 11/4/2019           | DEEP              | 100.0          | 51.3          | ]                                          | 91.1                    | -25.3                     | 13.5                        |                                                  |
|          | 12/3/2019           | DEEP              | 43.0           | 7.4           | 1                                          | 76.2                    | -30.7                     | 45.5                        | $\dashv$                                         |
| VE-14D   | 10/1/2019           | DEEP              | 84.0           | 1.1           |                                            | 85.5                    | -22.0                     | 37.8                        |                                                  |
|          | 11/4/2019           | DEEP              | 88.0           | 0.3           |                                            | 83.7                    | -22.0                     | 12.3                        |                                                  |
|          | 12/3/2019           | DEEP              | 90.0           | 0.0           |                                            | 72.3                    | -30.0                     | 53.8                        |                                                  |

#### Notes:

DPE = dual phase extraction ppmv = parts per million by volume VOC = volatile organic compound

F = Fahrenheit SCFM = standard cubic feet per minute Shallow = between 0 and 30 feet below ground surface

lbs = pounds ug/m3 = micrgrams per liter Deep = between approximately 30 and 100 feet below ground surface

PID = photoionization detector VE = vapor extraction -- = Not measured in  $H_2O$ , gauge = inches of water pressure, relative to atmospheric pressure; a negative gauge pressure is considered vaccum

<sup>1.</sup> Calculations are based on a subset of total VOC data from laboratory analyses of vapor samples, when collected, and measured flow rates from individual VEWs and the total system influent. Mass calculations are rounded to nearest 0.1 pound. If less than 0.05 pounds were calculated for the period, this will show as 0.0 pounds. VOCs that are not detected above the RLs are not included in the mass calculation. VEWs are not required to be sampled each quarter. If VEWs are sampled, it is based on operational considerations and to assist in mass calculations. All VEWs are sampled once per year.

<sup>2.</sup> A subset of VOC data used in mass removed calculations. TVOC concentrations are calculated using the detected concentrations from the following compounds: Tetrachloroethene (PCE), Trichloroethene (TCE), 1,1-Dichloroethene, Vinyl chloride, 1,1,1-Trichloroethane (TCA), 1,1-Dichloroethane, 1,2-Dichloroethane, Chloroform, Methylene chloride, Freon 11, Freon 12, Freon 113, Benzene, Toluene, o-Xylene, Carbon disulfide, Methyl ethyl ketone, Isopropyl Alcohol (Isopropanol), which account for approximately 98% of compounds in the data stream. Samples collected 8/13/2019, 8/14/2019, and 8/22/2019. Lab reports provided in Attachment F.

### **ATTACHMENT C**

# **Summary of Vapor Monitoring Probe Concentrations and Vacuum**

# Attachment C, Table C-1 Shallow Vapor Monitoring Probe Vacuum Summary OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019

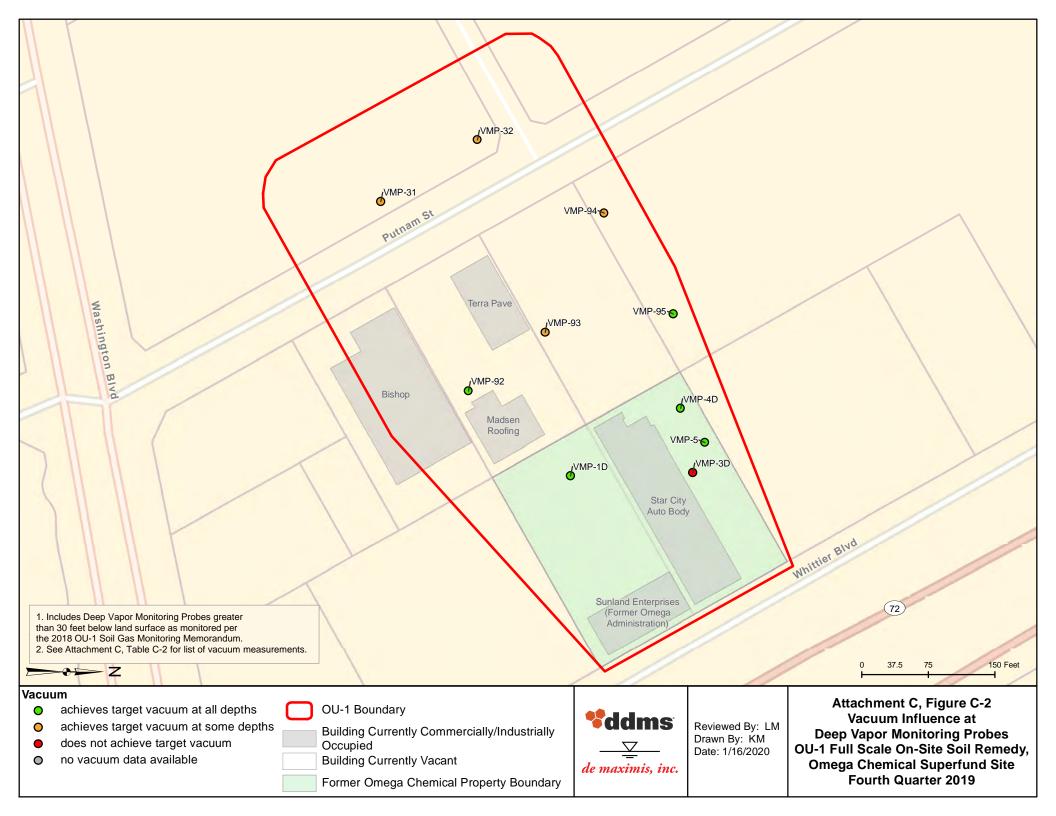
| Location | Monitoring Point<br>Depth<br>(feet bgs) | Vapor Extraction<br>Well ROI <sup>1</sup> | Measurement Date | Vacuum <sup>2,3</sup><br>(in H <sub>2</sub> O, gauge) |
|----------|-----------------------------------------|-------------------------------------------|------------------|-------------------------------------------------------|
| VE-1M    | 36 <sup>4</sup>                         | VE-1S, VE-5S                              | 11/7/2019        | -0.57                                                 |
| VE-2S    | 22                                      | VE-1S, VE-5S                              | 11/7/2019        | -0.11                                                 |
| VE-4S    | 22                                      | VE-1S, VE-5S                              | 11/7/2019        | -0.24                                                 |
| VE-5M    | 36 <sup>4</sup>                         | VE-5S                                     | 11/7/2019        | -0.82                                                 |
| VE-7S    | 30                                      | VE-8S                                     | 11/7/2019        | -0.23                                                 |
| VMP-11   | 30                                      | VE-10S, VE-12S                            | 11/7/2019        | -0.40                                                 |
| VMP-12   | 30                                      | VE-10S, VE-11S                            | 11/7/2019        | -0.78                                                 |
| VMP-13   | 30                                      | VE-31S                                    | 11/7/2019        | -0.12                                                 |
| VMP-14   | 30                                      |                                           | 11/7/2019        | -0.04                                                 |
| VMP-15   | 30                                      | VE-10S, VE-9S                             | 11/7/2019        | -0.56                                                 |
| VMP-16   | 30                                      | VE-11S                                    | 11/7/2019        | -0.50                                                 |
| VMP-17   | 30                                      |                                           | 11/7/2019        | -1.01                                                 |
| VMP-18   | 30                                      | VE-15S                                    | 11/7/2019        | -0.03                                                 |
| VMP-20   | 30                                      | VE-5S, VE-8S                              | 11/7/2019        | -0.31                                                 |
| VMP-21   | 30                                      | VE-15S                                    | 11/7/2019        | -0.12                                                 |
| VMP-22   | 30                                      |                                           | 11/7/2019        | -0.16                                                 |
| VMP-23   | 30                                      |                                           | 11/7/2019        | -0.02                                                 |
| VMP-24   | 30                                      |                                           | 11/7/2019        | -0.08                                                 |
| VMP-25   | 30                                      |                                           | 11/7/2019        | 0.00                                                  |
| VMP-26   | 30                                      | VE-14S                                    | 11/7/2019        | -0.03                                                 |
| VMP-27   | 30                                      | VE-14S                                    | 11/7/2019        | -0.02                                                 |
| VMP-31   | 6                                       | VE-21S                                    | 11/7/2019        | -0.01                                                 |
|          | 12                                      | VE-21S                                    | 11/7/2019        | -0.03                                                 |
|          | 24                                      | VE-21S                                    | 11/7/2019        | -0.06                                                 |
| VMP-32   | 6                                       | VE-39S                                    | 11/7/2019        | -0.02                                                 |
|          | 12                                      | VE-39S                                    | 11/7/2019        | -0.03                                                 |
|          | 24                                      | VE-39S                                    | 11/7/2019        | -0.05                                                 |
| VMP-43   | 6                                       | VE-31S                                    | 11/7/2019        | -1.31                                                 |
|          | 12                                      | VE-31S                                    | 11/7/2019        | -0.06                                                 |
|          | 24                                      | VE-31S                                    | 11/7/2019        | -1.64                                                 |
| VMP-94   | 6                                       | VE-31S                                    | 11/7/2019        | -0.03                                                 |
|          | 12                                      | VE-31S                                    | 11/7/2019        | -0.08                                                 |
|          | 24                                      | VE-31S                                    | 11/7/2019        | -0.19                                                 |

#### Notes:

bgs = below ground surface -- = not measured, VMP was inaccessible

- 1. ROI = Estimated design radius of influence by the vapor extraction well (VEW) listed. If no VEW is listed, then the VMP is not within the design ROI of a VEW.
- 2. in H2O, gauge = inches of water pressure relative to atmospheric pressure. A negative gauge pressure is considered vacuum.
- 3. Yellow highlighted cells indicate a VMP within the design ROI of a VEW that did not meet the target vacuum of -0.1 in H2O at the time the monitoring was conducted.
- 4.These wells are considered part of shallow vapor monitoring as their well screen intervals are 26 36 feet below ground surface.

# Attachment C, Table C-2 Deep Vapor Monitoring Probe Vacuum Summary OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019


| Location | Monitoring Point Depth (feet bgs) | Vapor Extraction<br>Well ROI <sup>1</sup> | Measurement Date | Vacuum <sup>2,3</sup><br>(in H <sub>2</sub> O, gauge) |
|----------|-----------------------------------|-------------------------------------------|------------------|-------------------------------------------------------|
| VMP-1D   | 70                                | DPE-8                                     | 11/7/2019        | -0.55                                                 |
| VMP-3D   | 70                                | VE-2D                                     | 11/7/2019        | -0.09                                                 |
| VMP-4D   | 70                                | DPE-3, VE-2D                              | 11/7/2019        | -1.74                                                 |
| VMP-5    | 45                                | VE-2D                                     | 11/7/2019        | -0.17                                                 |
| VMP-31   | 40                                | VE-6D                                     | 11/7/2019        | 0.00                                                  |
|          | 55                                | VE-6D                                     | 11/7/2019        | -0.21                                                 |
|          | 60                                | VE-6D                                     | 11/7/2019        | -0.30                                                 |
|          | 70                                | VE-6D                                     | 11/7/2019        | -0.61                                                 |
| VMP-32   | 40                                | VE-10D                                    | 11/7/2019        | -0.29                                                 |
|          | 55                                | VE-10D                                    | 11/7/2019        | -0.28                                                 |
|          | 60                                | VE-10D                                    | 11/7/2019        | -0.04                                                 |
|          | 70                                | VE-10D                                    | 11/7/2019        | -0.06                                                 |
| VMP-92   | 50                                | DPE-5                                     | 11/7/2019        | -0.10                                                 |
|          | 60                                | DPE-5                                     | 11/7/2019        | -0.71                                                 |
|          | 70                                | DPE-5                                     | 11/7/2019        | -0.39                                                 |
| VMP-93   | 50                                |                                           | 11/7/2019        | -0.87                                                 |
|          | 60                                |                                           | 11/7/2019        | -1.04                                                 |
|          | 70                                |                                           | 11/7/2019        | -0.04                                                 |
| VMP-94   | 40                                | DPE-4, VE-14D                             | 11/7/2019        | 0.00                                                  |
|          | 50                                | DPE-4, VE-14D                             | 11/7/2019        | -0.39                                                 |
|          | 60                                | DPE-4, VE-14D                             | 11/7/2019        | -0.05                                                 |
|          | 70                                | DPE-4, VE-14D                             | 11/7/2019        | -0.85                                                 |
| VMP-95   | 50                                |                                           | 11/7/2019        | -0.27                                                 |
|          | 60                                |                                           | 11/7/2019        | -0.25                                                 |
|          | 70                                |                                           | 11/7/2019        | -1.40                                                 |

#### Notes:

bgs = below ground surface

- 1. ROI = Estimated design radius of influence by the vapor extraction well (VEW) listed. If no VEW is listed, then the VMP is not within the design ROI of a VEW.
- 2. in H2O, gauge = inches of water pressure relative to atmospheric pressure. A negative gauge pressure is considered vacuum.
- 3. Yellow highlighted cells indicate a VMP within the design ROI of a VEW that did not meet the target vacuum of -0.1 in H2O at the time the monitoring was conducted.





### **ATTACHMENT D**

### Other Soil Gas Collected this Quarter

(Not Included this Quarter)

## **ATTACHMENT E**

**Field Forms** 

## OMEGA DAILY FIELD REPORT

| Project Name: Omeg          | ga Chem  | ical         | Project #:        | E742      | Date: 11 7/19                                          |  |  |
|-----------------------------|----------|--------------|-------------------|-----------|--------------------------------------------------------|--|--|
| Personnel: K. Durg A        | . 700    | Sub Cont     | ractors:          |           |                                                        |  |  |
| Arrival Time: 0607          |          | Departure    | Time: 1400        |           | Hours on Site: 8.0                                     |  |  |
| Odometer (Start):           |          | Odometer     | r (End):          | -         | Total Miles:                                           |  |  |
| Task Description:           | OU-1     | SVE OMM      | ☐ AOC SVE C       | MM∏ G     | WCS OMM □                                              |  |  |
|                             |          |              |                   |           |                                                        |  |  |
| +                           | (0)      | mla VI       | Mr mom            | Faring    | <del>'</del> y                                         |  |  |
|                             |          | 0            | 100011            | 0         |                                                        |  |  |
| Equipment List:             |          |              |                   |           |                                                        |  |  |
| ☐ Vacuum Meter              | Type: E  | xtech Mano   | meter             | Serial #: | 2147350                                                |  |  |
| ✓ Vacuum Meter              | Type: F  | luke 922 Lov | w-Range           | Serial #: | 98040163                                               |  |  |
| ☐ PID/FID                   | Type: N  | liniRAE 300  | O OPOG or rental? | Serial #: | 594-907978                                             |  |  |
| ☐ Sample Pump               | Type: T  | homas Pum    | p/Lung Box        | Serial #: | 061000166406/003689                                    |  |  |
| ☐ Flow Meter                | Type: V  | elocicalc 95 | 65                | Serial #: | 9565P1531034                                           |  |  |
| Water Level Meter           | Type: S  | olinst 101   |                   | Serial #: | 48231                                                  |  |  |
| ☐ Water Quality Meter       | Type: _  |              |                   | Serial #: |                                                        |  |  |
| ☐ Generator/Battery         | Туре: _  |              |                   | Serial #: |                                                        |  |  |
| ☐ Other(s):                 |          |              |                   |           |                                                        |  |  |
|                             |          |              |                   |           |                                                        |  |  |
|                             |          |              |                   |           | nronological sequence. Include ion times and methods.) |  |  |
| nama Anive au               | 1: L. U  | rs. Mus      | iliza deli        | ne hous   | Goto OW-8A/8B to                                       |  |  |
| Slock off                   |          |              |                   |           |                                                        |  |  |
| OCIS Get popon              |          |              | aload PF          | R         |                                                        |  |  |
| 0635 Mobilize an            | y vi pre | + CWS        | se PIP ( 0)       | 10 G pps  | ): 8 xps / 999 pps                                     |  |  |
| Doos Hleve                  |          |              |                   |           |                                                        |  |  |
| octo stat GM                | 2008     | y and        | UMP moni          | herly     | e TP.                                                  |  |  |
|                             |          | 7            |                   |           |                                                        |  |  |
| Client Signature (if applic | able):   |              |                   |           | Date:                                                  |  |  |

# DAILY FIELD REPORT

| Project Name: | Omega Chemical                            | Project #: | E742 | Date: 11/7/19    |
|---------------|-------------------------------------------|------------|------|------------------|
|               |                                           |            |      |                  |
|               | monitory @ TP. GIL                        |            |      |                  |
|               | all PRE valt walls                        |            |      | arand piping and |
|               | wall. Continue VMP<br>wonitoring. Domobil |            |      |                  |
| 140 AJ 317    |                                           | Con        |      |                  |
| 70            |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |



## **DAILY SAFETY MEETING**

|        |                                                                     | -    | Presented by                               | y - | K. Soher                                |
|--------|---------------------------------------------------------------------|------|--------------------------------------------|-----|-----------------------------------------|
| Ch     | eck the Topics/Information Re                                       | evie | wed:                                       |     |                                         |
|        | Safety is everyone's responsibility                                 | Q.   | Smoking in designated areas                |     | ivy/oak/sumac/insects/animals           |
| 2      | Accidents can be costly                                             | 0    | Parking and lay down area                  |     | Upgrade to Level C at: PID (eV          |
| 2      | No horseplay                                                        | Z    | Leather gloves for protection              |     | > ppmv                                  |
|        | Site health and safety plan reviewed                                | 1    | Vehicle backing up hazards                 |     | Work stoppage at: PID (eV)              |
| /      | Review emergency protocol                                           | Z    | Sharp object, rebar, and scrap metal       | _   | > ppmv, % LEL > 10%                     |
| 2      | Directions to hospital ( PIA )                                      |      | hazards                                    |     | All underground utilities cleared?      |
| 3      | Employee Right-To-Know/SDS                                          | Z    | Effects of the night before?               | 4   | Flex-N-Stretch performed                |
|        | location                                                            |      | Weather conditions (rain/snow)             |     | Anticipated visitors                    |
| d<br>a | First aid, safety, and PPE location                                 | Z    | Latex gloves inner/nitrile gloves outer    |     | Temporary Power Lines                   |
| 4      | Safety glasses, hard hat, safety                                    |      | Vibration related injuries                 | 0   | Overhead Utilities                      |
|        | boots                                                               |      | Open pits, excavations, and                |     | Excavations/Trenches (competent person) |
|        | Fire extinguisher locations                                         | -    | trenching hazards                          |     | Heavy Equipment Operations              |
| 4      | Daily work scope reviewed                                           | 7    | Noise hazards                              | ō   | Overloaded Equipment (tipping)          |
| 2      | Strains and sprains                                                 | 1    | Dust and vapor control                     | Z   | Heavy Lifting                           |
| 4      | Slips, trips, and falls                                             |      | Excavation/trenching                       | Z   | Traffic                                 |
| 4      | Eye wash station locations                                          |      | inspections/documentation                  | Z   |                                         |
| 1      | Electrical ground fault                                             |      | Confined space entry - permit              |     | Exclusion Zones Uneven Terrain          |
| 1      | Vehicle safety and driving/road                                     |      | required                                   | d   | 211213111112111111111111111111111111111 |
|        | conditions                                                          | _    | Confined space entry – non-permit required | Z   | Chemicals                               |
|        | Public safety and fences                                            |      | Refueling procedures                       | Ø   | Flammability                            |
|        | Heat and cold stress                                                | ō    | Full face respirators with proper          |     | Wet Surfaces                            |
| 7      | Equipment and machinery                                             | _    | cartridges                                 |     | Ladder Safety                           |
| 1      | familiarization                                                     |      | Hot work permits                           |     | Pinch Points                            |
| ]      | Excavator swing and loading                                         | Z    | Flying debris hazards                      | N   | Unexploded Ordnance (UXO) Haza          |
|        | Decontamination steps                                               | ō    | Overhead utility locations cleared.        | V   | Daily Vehicle Walkaround/Instpection    |
| í      | Portable tool safety and awareness<br>Orderly site and housekeeping |      | Poison                                     |     |                                         |
|        | er Discussion Items/Comme                                           |      |                                            | 70  | Jahr                                    |
|        | AME                                                                 |      | SHSO) of the day: Khalid                   |     | COMPANY                                 |
|        | Annabel You                                                         |      | 1 the                                      |     | JHA                                     |
| V      | Cholid Deliv                                                        | 1    | 0.1                                        | -   |                                         |
| Ic     | holid Allo                                                          | 1    |                                            | -   | J.HA.                                   |
|        |                                                                     | - 6  |                                            |     |                                         |
|        |                                                                     | -    |                                            | -   |                                         |
|        |                                                                     |      |                                            |     |                                         |
|        |                                                                     |      |                                            |     |                                         |
| _      |                                                                     | _    |                                            | -   |                                         |
|        |                                                                     |      |                                            |     |                                         |
|        |                                                                     |      |                                            |     |                                         |

#### Instructions:

- · Conduct a daily safety meeting prior to beginning each day's site activities
- · Complete form, obtain signatures, and file with the Daily Summary
- Follow-up on any noted items and document resolution of any action items.

## OMEGA DAILY FIELD REPORT

| Project Name: Omeg          | ga Chem  | ical         | Project #:        | E742      | Date: 11 7/19                                          |  |  |
|-----------------------------|----------|--------------|-------------------|-----------|--------------------------------------------------------|--|--|
| Personnel: K. Durg A        | . 700    | Sub Cont     | ractors:          |           |                                                        |  |  |
| Arrival Time: 0607          |          | Departure    | Time: 1400        |           | Hours on Site: 8.0                                     |  |  |
| Odometer (Start):           |          | Odometer     | r (End):          | -         | Total Miles:                                           |  |  |
| Task Description:           | OU-1     | SVE OMM      | ☐ AOC SVE C       | MM∏ G     | WCS OMM □                                              |  |  |
|                             |          |              |                   |           |                                                        |  |  |
| +                           | (0)      | mla VI       | Mr mom            | Faring    | <del>'</del> y                                         |  |  |
|                             |          | 0            | 100011            | 0         |                                                        |  |  |
| Equipment List:             |          |              |                   |           |                                                        |  |  |
| ☐ Vacuum Meter              | Type: E  | xtech Mano   | meter             | Serial #: | 2147350                                                |  |  |
| ✓ Vacuum Meter              | Type: F  | luke 922 Lov | w-Range           | Serial #: | 98040163                                               |  |  |
| ☐ PID/FID                   | Type: N  | liniRAE 300  | O OPOG or rental? | Serial #: | 594-907978                                             |  |  |
| ☐ Sample Pump               | Type: T  | homas Pum    | p/Lung Box        | Serial #: | 061000166406/003689                                    |  |  |
| ☐ Flow Meter                | Type: V  | elocicalc 95 | 65                | Serial #: | 9565P1531034                                           |  |  |
| Water Level Meter           | Type: S  | olinst 101   |                   | Serial #: | 48231                                                  |  |  |
| ☐ Water Quality Meter       | Type: _  |              |                   | Serial #: |                                                        |  |  |
| ☐ Generator/Battery         | Туре: _  |              |                   | Serial #: |                                                        |  |  |
| ☐ Other(s):                 |          |              |                   |           |                                                        |  |  |
|                             |          |              |                   |           |                                                        |  |  |
|                             |          |              |                   |           | nronological sequence. Include ion times and methods.) |  |  |
| nama Anive au               | 1: L. U  | rs. Mus      | iliza deli        | ne hous   | Goto OW-8A/8B to                                       |  |  |
| Slock off                   |          |              |                   |           |                                                        |  |  |
| OCIS Get popon              |          |              | aload PF          | R         |                                                        |  |  |
| 0635 Mobilize an            | y vi pre | + CWS        | se PIP ( 0)       | 10 G pps  | ): 8 xps / 999 pps                                     |  |  |
| Doos Hleve                  |          |              |                   |           |                                                        |  |  |
| octo stat GM                | 2008     | y and        | UMP moni          | herly     | e TP.                                                  |  |  |
|                             |          | 7            |                   |           |                                                        |  |  |
| Client Signature (if applic | able):   |              |                   |           | Date:                                                  |  |  |

# DAILY FIELD REPORT

| Project Name: | Omega Chemical                            | Project #: | E742 | Date: 11/7/19    |
|---------------|-------------------------------------------|------------|------|------------------|
|               |                                           |            |      |                  |
|               | monitory @ TP. GIL                        |            |      |                  |
|               | all PRE valt walls                        |            |      | arand piping and |
|               | wall. Continue VMP<br>wonitoring. Domobil |            |      |                  |
| 140 AJ 317    |                                           | Con        |      |                  |
| 70            |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |
|               |                                           |            |      |                  |



## **DAILY SAFETY MEETING**

|        |                                                                     | -    | Presented by                               | y - | K. Soher                                |
|--------|---------------------------------------------------------------------|------|--------------------------------------------|-----|-----------------------------------------|
| Ch     | eck the Topics/Information Re                                       | evie | wed:                                       |     |                                         |
|        | Safety is everyone's responsibility                                 | Q.   | Smoking in designated areas                |     | ivy/oak/sumac/insects/animals           |
| 2      | Accidents can be costly                                             | 0    | Parking and lay down area                  |     | Upgrade to Level C at: PID (eV          |
| 2      | No horseplay                                                        | Z    | Leather gloves for protection              |     | > ppmv                                  |
|        | Site health and safety plan reviewed                                | 1    | Vehicle backing up hazards                 |     | Work stoppage at: PID (eV)              |
| /      | Review emergency protocol                                           | Z    | Sharp object, rebar, and scrap metal       | _   | > ppmv, % LEL > 10%                     |
| 2      | Directions to hospital ( PIA )                                      |      | hazards                                    |     | All underground utilities cleared?      |
| 3      | Employee Right-To-Know/SDS                                          | Z    | Effects of the night before?               | 4   | Flex-N-Stretch performed                |
|        | location                                                            |      | Weather conditions (rain/snow)             |     | Anticipated visitors                    |
| d<br>a | First aid, safety, and PPE location                                 | Z    | Latex gloves inner/nitrile gloves outer    |     | Temporary Power Lines                   |
| 4      | Safety glasses, hard hat, safety                                    |      | Vibration related injuries                 | 0   | Overhead Utilities                      |
|        | boots                                                               |      | Open pits, excavations, and                |     | Excavations/Trenches (competent person) |
|        | Fire extinguisher locations                                         | -    | trenching hazards                          |     | Heavy Equipment Operations              |
| 4      | Daily work scope reviewed                                           | 7    | Noise hazards                              | ō   | Overloaded Equipment (tipping)          |
| 2      | Strains and sprains                                                 | 1    | Dust and vapor control                     | Z   | Heavy Lifting                           |
| 4      | Slips, trips, and falls                                             |      | Excavation/trenching                       | Z   | Traffic                                 |
| 4      | Eye wash station locations                                          |      | inspections/documentation                  | Z   |                                         |
| 1      | Electrical ground fault                                             |      | Confined space entry - permit              |     | Exclusion Zones Uneven Terrain          |
| 1      | Vehicle safety and driving/road                                     |      | required                                   | d   | 211213111112111111111111111111111111111 |
|        | conditions                                                          | _    | Confined space entry – non-permit required | Z   | Chemicals                               |
|        | Public safety and fences                                            |      | Refueling procedures                       | Ø   | Flammability                            |
|        | Heat and cold stress                                                | ō    | Full face respirators with proper          |     | Wet Surfaces                            |
| 7      | Equipment and machinery                                             | _    | cartridges                                 |     | Ladder Safety                           |
| 1      | familiarization                                                     |      | Hot work permits                           |     | Pinch Points                            |
| ]      | Excavator swing and loading                                         | Z    | Flying debris hazards                      | N   | Unexploded Ordnance (UXO) Haza          |
|        | Decontamination steps                                               | ō    | Overhead utility locations cleared.        | V   | Daily Vehicle Walkaround/Instpection    |
| í      | Portable tool safety and awareness<br>Orderly site and housekeeping |      | Poison                                     |     |                                         |
|        | er Discussion Items/Comme                                           |      |                                            | 70  | Jahr                                    |
|        | AME                                                                 |      | SHSO) of the day: Khalid                   |     | COMPANY                                 |
|        | Annabel You                                                         |      | 1 the                                      |     | JHA                                     |
| V      | Cholid Deliv                                                        | 1    | 0.1                                        | -   |                                         |
| Ic     | holid Allo                                                          | 1    |                                            | -   | J.HA.                                   |
|        |                                                                     | - 6  |                                            |     |                                         |
|        |                                                                     | -    |                                            | -   |                                         |
|        |                                                                     |      |                                            |     |                                         |
|        |                                                                     |      |                                            |     |                                         |
| _      |                                                                     | _    |                                            | -   |                                         |
|        |                                                                     |      |                                            |     |                                         |
|        |                                                                     |      |                                            |     |                                         |

#### Instructions:

- · Conduct a daily safety meeting prior to beginning each day's site activities
- · Complete form, obtain signatures, and file with the Daily Summary
- Follow-up on any noted items and document resolution of any action items.

Omega - OU1 and AOC VMP Monitoring

Date: U 7/19 Technician: K. Azh V, A. 700

|               | -                 |                        |                        | _        | _             | -                                         |                           |                                |
|---------------|-------------------|------------------------|------------------------|----------|---------------|-------------------------------------------|---------------------------|--------------------------------|
| WELL ID       | Depth<br>(ft bgs) | Well Diameter (inches) | Purge<br>Time<br>(min) | Date     | Time          | Observed<br>Vacuum<br>("H <sub>2</sub> O) | Sample<br>Taken?<br>(Y/N) | CDM Smith Review Comments      |
|               | 1 ( ) /           |                        |                        |          | BISHOP        |                                           |                           |                                |
|               | -                 |                        |                        |          | 19 Putnam St, |                                           | 1 1                       | 01 - 111 11 - 11               |
| /MP-23        | 30                | 4                      | 8                      | 11/7     | 0734          | -0.029                                    | D                         | Should be collected            |
| /MP-24        | 31.5              | 4                      | 8                      | 15       |               | -0.080                                    | N                         | Should be collected            |
| /MP-25        | 31.5              | 4                      | 8                      | 1        | 0736          | <b>Ø</b>                                  | N                         | Should be collected            |
|               |                   |                        |                        | 12471 W  | FRED R. F     | lvd, Whittier, CA                         |                           |                                |
| RR-VMP-1-6    | 6                 | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| RR-VMP-1-12   | 12                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| FRR-VMP-4-6   | 6                 | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| FRR-VMP-4-12  | 12                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| RR-VMP-7-6    | 6                 | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| RR-VMP-7-12   | 12                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| FRR-VMP-10-2  | 2                 | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| RR-VMP-10-6   | 6                 | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| RR-VMP-13-6   | 6                 | 0.25                   | 1                      |          |               | 170                                       |                           | AOC off, don't collect         |
|               | 12                | 0.25                   | 1                      | 1        |               |                                           |                           | AOC off, don't collect         |
| FRR-VMP-13-12 | -                 | 0.20                   |                        | AISER PE | RMANENTE      | MEDICAL OFFICE                            | S                         |                                |
|               |                   |                        |                        | 12470    | Whittier Blvd | d, Whittier, CA                           |                           |                                |
| VMP-43-6      | 6                 | 0.25                   | 1                      | 11/7     | 0753          | -1,309                                    | N                         |                                |
| /MP-43-12     | 12                | 0.25                   | 1                      | 1        | 0758          |                                           |                           |                                |
| /MP-43-24     | 24                | 0.25                   | 1                      |          | 0756          | -1.641                                    |                           |                                |
| /MP-94-6      | 6                 | 0.25                   | 1                      |          | 0741          | -0.030                                    |                           |                                |
| /MP-94-11,    | 11                | 0.25                   | 1                      |          | 0743          | -0.089                                    |                           |                                |
| /MP-94-24     | 24                | 0.25                   | 1                      |          | 0744          | -0.185                                    |                           |                                |
| /MP-94-40     | 40                | 0.25                   | 1                      |          | 0745          | -0.004                                    |                           |                                |
| /MP-94-50     | 50                | 0.25                   | 1                      |          | 0747          | -0.391                                    |                           |                                |
| /MP-94-60     | 60                | 0.25                   | 1                      |          | 0748          | -0.051                                    |                           |                                |
| VMP-94-69.5   | 69.5              | 0.25                   | 1                      |          | 0749          | -0.846                                    |                           |                                |
| VMP-95-51     | 51                | 0.25                   | 1                      |          | 0800          | -0.245                                    |                           |                                |
| /MP-95-61     | 61                | 0.25                   | 1                      |          | 2080          | -0.247                                    |                           |                                |
| VMP-95-69.5   | 69.5              | 0.25                   | 1                      | 1        | 0801          | -1,396                                    | 1                         |                                |
|               |                   |                        |                        |          |               | NGINEERING<br>d, Whittier, CA             |                           |                                |
| a.m. 10.0     | 6                 | 0.25                   | 1                      | 12464    | Willtier Bive | d, Willtier, CA                           |                           | Not needed, per Kyle's comment |
| VMP-40-6      | 12                | 1                      | 1                      |          | 1             |                                           |                           | Not needed, per Kyle's comment |
| VMP-40-12     | 24                | 0.25                   | 1                      | 1        |               |                                           |                           | Not needed, per Kyle's comment |
| VMP-40-24     | 55                | 0.25                   | 1                      |          |               |                                           |                           | Not needed, per Kyle's comment |
| VMP-40-55     | 70                | 0.25                   | 1                      |          |               |                                           |                           | Not needed, per Kyle's comment |
| VMP-40-70     | 6                 | 0.25                   | 1                      |          | -             |                                           |                           | Not needed, per Kyle's comment |
| VMP-41-6      |                   | 0.25                   | 1                      |          |               |                                           |                           | Not needed, per Kyle's comment |
| VMP-41-12     | 12                |                        | -                      | +        | -             |                                           |                           | Not needed, per Kyle's comment |
| VMP-41-24     | 24                | 0.25                   | 1                      | -        | -             |                                           |                           | Not needed, per Kyle's comment |
| VMP-41-55     | 55                | 1                      | 1                      | MERC     | HANT META     | LS (FORMER)                               |                           | not needed, per ryle's comment |
|               |                   |                        |                        |          |               | Whittier, CA                              |                           |                                |
| VMP-44-12     | 12                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| VMP-44-24     | 24                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |
| VMP-86-12     | 12                | 0.25                   | 1                      |          | 100           |                                           |                           | AOC off, don't collect         |
| VMP-86-24     | 24                | 0.25                   | 1                      |          |               |                                           |                           | AOC off, don't collect         |

Date: 11/7/19

Omega - OU1 and AOC VMP Monitoring

Technician: (C. Azher, A. 730

|           |                   |                              |                        | -       |                          |                                           |                           | (2.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|-------------------|------------------------------|------------------------|---------|--------------------------|-------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WELL ID   | Depth<br>(ft bgs) | Well<br>Diameter<br>(inches) | Purge<br>Time<br>(min) | Date    | Time                     | Observed<br>Vacuum<br>("H <sub>2</sub> O) | Sample<br>Taken?<br>(Y/N) | CDM Smith Review Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| /MP-87-12 | 12                | 0.25                         | 1                      |         |                          |                                           |                           | AOC off, don't collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MP-87-24  | 24                | 0.25                         | 1                      |         | 5                        |                                           |                           | AOC off, don't collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MP-88-12  | 12                | 0.25                         | 1                      |         |                          |                                           |                           | AOC off, don't collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| /MP-88-24 | 24                | 0.25                         | 1                      |         |                          |                                           |                           | AOC off, don't collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                   |                              |                        |         |                          | (FORMER)                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND 04 C   | 6                 | 0.25                         | 1                      | 11 7    | o 816                    | lvd, Whittier, CA                         | N                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-31-6   | 12                | 0.25                         | 1                      | 111     | 0818                     | -0.026                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-31-12  | 24                | 0.25                         | 1                      |         |                          |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-31-24  | 40                | 0.25                         | 1                      |         | 0817                     | 9                                         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-31-40  | 55                | 1                            | 1                      | 1       | 1041                     |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-31-55  | 60                | 0.25                         | 1                      |         | 0827                     | -0.206                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /MP-31-60 | 70                | 0.25                         | 1                      |         | 0828                     |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /MP-31-70 | 6                 | 0.25                         | 1                      |         |                          | -0.611                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-32-6   | 12                | 0.25                         | 1                      |         | 0812                     | ~0.017                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-32-12  | 24                | 0.25                         | 1                      |         | 0813                     | ~0.048                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-32-24  | 40                | 0.25                         | 1                      |         |                          |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-32-40  | 55                | 1                            | 1                      |         | 0809                     | -0.290                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-32-55  | 60                | 0.25                         | 1                      | + +     | 1039                     | -0.283                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /MP-32-60 | 70                | 0.25                         | 1                      | 1 1     | 0190                     |                                           | 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /MP-32-70 | 70                | 0.25                         | - 1                    | SK      | ATELAND (                | -0.056<br>FORMER)                         | •                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                   |                              |                        | 12520 V |                          | , Whittier, CA                            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /MP-18    | 30                | 4                            | 8                      | 11/2    | 1805                     | - 0.030                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-39-6   | 6                 | 0.25                         | 1                      |         |                          |                                           | 1                         | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-39-12  | 12                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-39-24  | 24                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-39-55  | 55                | 1                            | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-6   | 6                 | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-12  | 12                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-24  | 24                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-40  | 40                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-50  | 50                | 1                            | 1                      | 14      |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MP-84-60  | 60                | 0.25                         | 1                      |         |                          |                                           |                           | Not needed, per Kyle's comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                   |                              |                        |         | AR CITY AU Whittier Blvc | TO BODY<br>I, Whittier, CA                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E-7S      | 30                | 4                            | 4                      | 11/2    | 1155                     | -0.2323                                   | N                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-3D     | 70                | 4                            | 3                      | 1       | 1150                     | -0.087                                    | -                         | Cap off for ophimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /MP-4D    | 70                | 4                            | 3                      |         | 1157                     | -1.744                                    |                           | to by he be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MP-5      | 45                | 1                            | 3                      |         | 1153                     | -0.169                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-22     | 31.5              | 4                            | 8                      | 1       | 1147                     | -0.159                                    | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |                   |                              |                        | 40544   | TERRA P                  |                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 74D 44    | 30                | 4                            | 8                      | 12511   | o902                     | Whittier, CA                              | 2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-11     | 31.5              | 4                            | 8                      | 1111    |                          |                                           | 10                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-12     | 31.5              | 4                            | 8                      |         | 0904                     | -0.780                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-13     | 31.5              | 4                            | 8                      |         | 0932                     | ~0.120                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-14     |                   |                              |                        |         | 0941                     | -0.036                                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-15     | 31.5              | 4                            | 8                      |         | 2829                     | -0.559                                    | ,                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MP-16     | 31.5              | 4                            | 8                      | 1       | 1280                     | -0.495                                    | *                         | Land and the same of the same |

Omega - OU1 and AOC VMP Monitoring

| Date: u/7/ | 19                | K. Scho, A. Too              |                        |      |      |                                           |                           |                           |
|------------|-------------------|------------------------------|------------------------|------|------|-------------------------------------------|---------------------------|---------------------------|
| WELL ID    | Depth<br>(ft bgs) | Well<br>Diameter<br>(inches) | Purge<br>Time<br>(min) | Date | Time | Observed<br>Vacuum<br>("H <sub>2</sub> O) | Sample<br>Taken?<br>(Y/N) | CDM Smith Review Comments |
| VMP-17     | 31.5              | 4                            | 8                      | 11/7 | 0915 | -1.010                                    | 10                        |                           |

Date: 11/7/19

Omega - OU1 and AOC VMP Monitoring Technician: K. Azhr, A. 700

| WELL ID     | Depth<br>(ft bgs) | Well<br>Diameter<br>(inches) | Purge<br>Time<br>(min) | Date | Time  | Observed<br>Vacuum<br>("H <sub>2</sub> O) | Sample<br>Taken?<br>(Y/N) | CDM Smith Review Comments |
|-------------|-------------------|------------------------------|------------------------|------|-------|-------------------------------------------|---------------------------|---------------------------|
| MP-92-51.5  | 51.5              | 0.25                         | 1                      | 11/2 | 0909  | -0.104                                    | N                         |                           |
| MP-92-62    | 62                | 0.25                         | 1                      | 1    | 50907 | -0.714                                    | 1                         |                           |
| MP-92-68.5  | 68.5              | 0.25                         | 1                      |      | 0912  | -0.386                                    |                           |                           |
| /MP-93-50   | 50                | 0.25                         | 1                      |      | 0920  | - 0.872                                   |                           |                           |
| /MP-93-60   | 60                | 0.25                         | 1                      |      | 0925  | -1.040                                    |                           |                           |
| /MP-93-69.5 | 69.5              | 0.25                         | 1                      | 1    | 2926  |                                           | 1                         |                           |
|             |                   |                              | Ţŀ                     |      |       | UCTION (FORMER<br>d, Whittier, CA         | ₹)                        |                           |
| /E-1M       | 36.5              | 4                            | 4                      | u 7  | 1224  | -0.569                                    | N                         |                           |
| /E-2S       | 23                | 4                            | 4                      | 1    | 1223  | -0.109                                    | (                         |                           |
| /E-4S       | 22.5              | 4                            | 4                      |      | 1225  | -0.241                                    |                           |                           |
| /E-5M       | 36.5              | 4                            | 4                      |      | 1230  | -0.819                                    |                           |                           |
| /MP-1D      | 70                | 4                            | 3                      |      | 1227  | -0.550                                    |                           |                           |
| /MP-20      | 31.5              | 4                            | 8                      |      | 1231  | -0305                                     |                           |                           |
| /MP-21      | 31.5              | 4                            | 8                      |      | 1219  | -0.117                                    |                           |                           |
| /MP-26      | 30.5              | 4                            | 8                      |      | 1221  | -0.031                                    |                           |                           |
| VMP-27      | 30                | 4                            | 8                      | J    | 1237  | -0.000                                    | 1                         |                           |

# **ATTACHMENT F**

**Laboratory Analytical Results** 



10/10/2019 Ms. Jaime Dinello DeMaximis, Inc 1340 Reynolds Ave, Suite 105

Irvine CA 92614

Project Name: Omega - OU1 SVE Monthly GAC Sampling

Project #:

Workorder #: 1910127

Dear Ms. Jaime Dinello

The following report includes the data for the above referenced project for sample(s) received on 10/3/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

July Butte



#### **WORK ORDER #: 1910127**

Work Order Summary

Omega Chemical Site Environmental

Remediation Trust

1322 Scott St. Suite 104

P.O. #

CLIENT: Ms. Jaime Dinello BILL TO: Mr. Tom Dorsey

DeMaximis, Inc

1340 Reynolds Ave, Suite 105

Irvine, CA 92614

949.679.9290

FAX: 949.679.9078 PROJECT # Omega - OU1 SVE Monthly GAC

**DATE RECEIVED:** 10/03/2019 CONTACT: Sampling Kelly Buettner

**DATE COMPLETED:** 10/09/2019

PHONE:

| FRACTION# | NAME                  | TEST  | RECEIPT<br>VAC./PRES. | FINAL<br>PRESSURE |
|-----------|-----------------------|-------|-----------------------|-------------------|
|           |                       |       |                       |                   |
| 01A       | OC_SVE_EFF_GAC_100119 | TO-15 | 2.6 "Hg               | 14.8 psi          |
| 02A       | OC_SVE_MID_GAC_100119 | TO-15 | 4.7 "Hg               | 15.3 psi          |
| 03A       | OC_SVE_INF_GAC_100119 | TO-15 | 4.3 "Hg               | 15.9 psi          |
| 04A       | Lab Blank             | TO-15 | NA                    | NA                |
| 04B       | Lab Blank             | TO-15 | NA                    | NA                |
| 05A       | CCV                   | TO-15 | NA                    | NA                |
| 05B       | CCV                   | TO-15 | NA                    | NA                |
| 06A       | LCS                   | TO-15 | NA                    | NA                |
| 06AA      | LCSD                  | TO-15 | NA                    | NA                |
| 06B       | LCS                   | TO-15 | NA                    | NA                |
| 06BB      | LCSD                  | TO-15 | NA                    | NA                |

|               | 14 | cide / | layer |         |          |
|---------------|----|--------|-------|---------|----------|
| CERTIFIED BY: |    |        | 0     | _ DATE: | 10/09/19 |
|               |    |        |       |         |          |

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.



#### LABORATORY NARRATIVE EPA Method TO-15 DeMaximis, Inc Workorder# 1910127

Three 1 Liter Summa Canister samples were received on October 03, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

#### **Receiving Notes**

There were no receiving discrepancies.

#### **Analytical Notes**

The TNOMC concentration was calculated by taking the total area counts in the sample and quantitating the area based on the response factor of TNMOC ref. to Heptane (MW=100).

## **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.
  - M Reported value may be biased due to apparent matrix interferences.
  - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: OC\_SVE\_EFF\_GAC\_100119

Lab ID#: 1910127-01A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |  |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|--|
| Freon 11                         | 1.1                  | 2.3              | 6.2                   | 13                |  |
| 1,1-Dichloroethene               | 1.1                  | 2.0              | 4.4                   | 8.1               |  |
| 2-Butanone (Methyl Ethyl Ketone) | 4.4                  | 56               | 13                    | 160               |  |
| TNMOC ref. to Heptane (MW=100)   | 22                   | 92               | 90                    | 380               |  |

Client Sample ID: OC\_SVE\_MID\_GAC\_100119

Lab ID#: 1910127-02A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                         | 1.2                  | 1.6              | 6.8                   | 9.1               |
| Freon 113                        | 1.2                  | 1.8              | 9.3                   | 14                |
| 1,1-Dichloroethene               | 1.2                  | 2.3              | 4.8                   | 9.2               |
| 2-Butanone (Methyl Ethyl Ketone) | 4.8                  | 43               | 14                    | 130               |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 94               | 99                    | 380               |

Client Sample ID: OC\_SVE\_INF\_GAC\_100119

Lab ID#: 1910127-03A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                         | 1.2                  | 1.2              | 6.8                   | 6.9               |
| Freon 113                        | 1.2                  | 6.2              | 9.3                   | 48                |
| 1,1-Dichloroethene               | 1.2                  | 2.6              | 4.8                   | 10                |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 46               | 14                    | 140               |
| 1,1,1-Trichloroethane            | 1.2                  | 6.5              | 6.6                   | 36                |
| Trichloroethene                  | 1.2                  | 5.4              | 6.5                   | 29                |
| Tetrachloroethene                | 1.2                  | 120              | 8.2                   | 850               |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 470              | 99                    | 1900              |



## Client Sample ID: OC\_SVE\_EFF\_GAC\_100119 Lab ID#: 1910127-01A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100721 Date of Collection: 10/1/19 10:46:00 AM Dil. Factor: 2.20 Date of Analysis: 10/7/19 10:56 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.1                  | Not Detected     | 5.4                   | Not Detected      |
| Vinyl Chloride                   | 1.1                  | Not Detected     | 2.8                   | Not Detected      |
| Freon 11                         | 1.1                  | 2.3              | 6.2                   | 13                |
| Freon 113                        | 1.1                  | Not Detected     | 8.4                   | Not Detected      |
| 1,1-Dichloroethene               | 1.1                  | 2.0              | 4.4                   | 8.1               |
| 2-Propanol                       | 4.4                  | Not Detected     | 11                    | Not Detected      |
| Carbon Disulfide                 | 4.4                  | Not Detected     | 14                    | Not Detected      |
| Methylene Chloride               | 11                   | Not Detected     | 38                    | Not Detected      |
| Hexane                           | 1.1                  | Not Detected     | 3.9                   | Not Detected      |
| 1,1-Dichloroethane               | 1.1                  | Not Detected     | 4.4                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.4                  | 56               | 13                    | 160               |
| Chloroform                       | 1.1                  | Not Detected     | 5.4                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.1                  | Not Detected     | 6.0                   | Not Detected      |
| Carbon Tetrachloride             | 1.1                  | Not Detected     | 6.9                   | Not Detected      |
| Benzene                          | 1.1                  | Not Detected     | 3.5                   | Not Detected      |
| 1,2-Dichloroethane               | 1.1                  | Not Detected     | 4.4                   | Not Detected      |
| Trichloroethene                  | 1.1                  | Not Detected     | 5.9                   | Not Detected      |
| 1,4-Dioxane                      | 4.4                  | Not Detected     | 16                    | Not Detected      |
| Toluene                          | 1.1                  | Not Detected     | 4.1                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.1                  | Not Detected     | 6.0                   | Not Detected      |
| Tetrachloroethene                | 1.1                  | Not Detected     | 7.5                   | Not Detected      |
| o-Xylene                         | 1.1                  | Not Detected     | 4.8                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 22                   | 92               | 90                    | 380               |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 97        | 70-130 |  |
| 1,2-Dichloroethane-d4 | 88        | 70-130 |  |
| 4-Bromofluorobenzene  | 94        | 70-130 |  |



## Client Sample ID: OC\_SVE\_MID\_GAC\_100119 Lab ID#: 1910127-02A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100722 Date of Collection: 10/1/19 10:47:00 AM Dil. Factor: 2.42 Date of Analysis: 10/7/19 11:24 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.0                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.1                   | Not Detected      |
| Freon 11                         | 1.2                  | 1.6              | 6.8                   | 9.1               |
| Freon 113                        | 1.2                  | 1.8              | 9.3                   | 14                |
| 1,1-Dichloroethene               | 1.2                  | 2.3              | 4.8                   | 9.2               |
| 2-Propanol                       | 4.8                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 4.8                  | Not Detected     | 15                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 42                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.3                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.8                  | 43               | 14                    | 130               |
| Chloroform                       | 1.2                  | Not Detected     | 5.9                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.6                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 3.9                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| Trichloroethene                  | 1.2                  | Not Detected     | 6.5                   | Not Detected      |
| 1,4-Dioxane                      | 4.8                  | Not Detected     | 17                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.6                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | Not Detected     | 8.2                   | Not Detected      |
| o-Xylene                         | 1.2                  | Not Detected     | 5.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 94               | 99                    | 380               |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 101       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 88        | 70-130 |  |
| 4-Bromofluorobenzene  | 98        | 70-130 |  |



## Client Sample ID: OC\_SVE\_INF\_GAC\_100119 Lab ID#: 1910127-03A

## EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100818 | Date of Collection: 10/1/19 10:46:00 AM |
|--------------|----------|-----------------------------------------|
| Dil. Factor: | 2.43     | Date of Analysis: 10/8/19 10:42 PM      |

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.0                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.1                   | Not Detected      |
| Freon 11                         | 1.2                  | 1.2              | 6.8                   | 6.9               |
| Freon 113                        | 1.2                  | 6.2              | 9.3                   | 48                |
| 1,1-Dichloroethene               | 1.2                  | 2.6              | 4.8                   | 10                |
| 2-Propanol                       | 4.9                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 4.9                  | Not Detected     | 15                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 42                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.3                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 46               | 14                    | 140               |
| Chloroform                       | 1.2                  | Not Detected     | 5.9                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | 6.5              | 6.6                   | 36                |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.6                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 3.9                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| Trichloroethene                  | 1.2                  | 5.4              | 6.5                   | 29                |
| 1,4-Dioxane                      | 4.9                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.6                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | 120              | 8.2                   | 850               |
| o-Xylene                         | 1.2                  | Not Detected     | 5.3                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 470              | 99                    | 1900              |

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| Toluene-d8            | 99        | 70-130           |  |
| 1,2-Dichloroethane-d4 | 86        | 70-130           |  |
| 4-Bromofluorobenzene  | 96        | 70-130           |  |



## Client Sample ID: Lab Blank Lab ID#: 1910127-04A

## **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:   | 17100705 | Date of Collection: NA             |
|--------------|----------|------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 10/7/19 11:19 AM |

|                                  |                      |                  | <b>,</b>              |                   |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Freon 12                         | 0.50                 | Not Detected     | 2.5                   | Not Detected      |
| Vinyl Chloride                   | 0.50                 | Not Detected     | 1.3                   | Not Detected      |
| Freon 11                         | 0.50                 | Not Detected     | 2.8                   | Not Detected      |
| Freon 113                        | 0.50                 | Not Detected     | 3.8                   | Not Detected      |
| 1,1-Dichloroethene               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Propanol                       | 2.0                  | Not Detected     | 4.9                   | Not Detected      |
| Carbon Disulfide                 | 2.0                  | Not Detected     | 6.2                   | Not Detected      |
| Methylene Chloride               | 5.0                  | Not Detected     | 17                    | Not Detected      |
| Hexane                           | 0.50                 | Not Detected     | 1.8                   | Not Detected      |
| 1,1-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 2.0                  | Not Detected     | 5.9                   | Not Detected      |
| Chloroform                       | 0.50                 | Not Detected     | 2.4                   | Not Detected      |
| 1,1,1-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Carbon Tetrachloride             | 0.50                 | Not Detected     | 3.1                   | Not Detected      |
| Benzene                          | 0.50                 | Not Detected     | 1.6                   | Not Detected      |
| 1,2-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| Trichloroethene                  | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| 1,4-Dioxane                      | 2.0                  | Not Detected     | 7.2                   | Not Detected      |
| Toluene                          | 0.50                 | Not Detected     | 1.9                   | Not Detected      |
| 1,1,2-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Tetrachloroethene                | 0.50                 | Not Detected     | 3.4                   | Not Detected      |
| o-Xylene                         | 0.50                 | Not Detected     | 2.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 10                   | Not Detected     | 41                    | Not Detected      |
|                                  |                      |                  |                       |                   |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 97        | 70-130 |  |
| 1,2-Dichloroethane-d4 | 88        | 70-130 |  |
| 4-Bromofluorobenzene  | 95        | 70-130 |  |



## Client Sample ID: Lab Blank Lab ID#: 1910127-04B

## EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17100807 | Date of Collection: NA             |
|--------------|----------|------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 10/8/19 02:23 PM |

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 0.50                 | Not Detected     | 2.5                   | Not Detected      |
| Vinyl Chloride                   | 0.50                 | Not Detected     | 1.3                   | Not Detected      |
| Freon 11                         | 0.50                 | Not Detected     | 2.8                   | Not Detected      |
| Freon 113                        | 0.50                 | Not Detected     | 3.8                   | Not Detected      |
| 1,1-Dichloroethene               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Propanol                       | 2.0                  | Not Detected     | 4.9                   | Not Detected      |
| Carbon Disulfide                 | 2.0                  | Not Detected     | 6.2                   | Not Detected      |
| Methylene Chloride               | 5.0                  | Not Detected     | 17                    | Not Detected      |
| Hexane                           | 0.50                 | Not Detected     | 1.8                   | Not Detected      |
| 1,1-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 2.0                  | Not Detected     | 5.9                   | Not Detected      |
| Chloroform                       | 0.50                 | Not Detected     | 2.4                   | Not Detected      |
| 1,1,1-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Carbon Tetrachloride             | 0.50                 | Not Detected     | 3.1                   | Not Detected      |
| Benzene                          | 0.50                 | Not Detected     | 1.6                   | Not Detected      |
| 1,2-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| Trichloroethene                  | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| 1,4-Dioxane                      | 2.0                  | Not Detected     | 7.2                   | Not Detected      |
| Toluene                          | 0.50                 | Not Detected     | 1.9                   | Not Detected      |
| 1,1,2-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Tetrachloroethene                | 0.50                 | Not Detected     | 3.4                   | Not Detected      |
| o-Xylene                         | 0.50                 | Not Detected     | 2.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 10                   | Not Detected     | 41                    | Not Detected      |

| Surrogates            |           | Method |
|-----------------------|-----------|--------|
|                       | %Recovery | Limits |
| Toluene-d8            | 98        | 70-130 |
| 1,2-Dichloroethane-d4 | 86        | 70-130 |
| 4-Bromofluorobenzene  | 96        | 70-130 |



## Client Sample ID: CCV Lab ID#: 1910127-05A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100702 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/19 09:57 AM

| Compound                         | %Recovery |  |
|----------------------------------|-----------|--|
| Freon 12                         | 89        |  |
| Vinyl Chloride                   | 98        |  |
| Freon 11                         | 92        |  |
| Freon 113                        | 92        |  |
| 1,1-Dichloroethene               | 98        |  |
| 2-Propanol                       | 95        |  |
| Carbon Disulfide                 | 98        |  |
| Methylene Chloride               | 103       |  |
| Hexane                           | 99        |  |
| 1,1-Dichloroethane               | 98        |  |
| 2-Butanone (Methyl Ethyl Ketone) | 106       |  |
| Chloroform                       | 98        |  |
| 1,1,1-Trichloroethane            | 92        |  |
| Carbon Tetrachloride             | 91        |  |
| Benzene                          | 102       |  |
| 1,2-Dichloroethane               | 87        |  |
| Trichloroethene                  | 96        |  |
| 1,4-Dioxane                      | 98        |  |
| Toluene                          | 97        |  |
| 1,1,2-Trichloroethane            | 98        |  |
| Tetrachloroethene                | 98        |  |
| o-Xylene                         | 98        |  |
| TNMOC ref. to Heptane (MW=100)   | 100       |  |

|                       |           | Method<br>Limits |  |
|-----------------------|-----------|------------------|--|
| Surrogates            | %Recovery |                  |  |
| Toluene-d8            | 99        | 70-130           |  |
| 1,2-Dichloroethane-d4 | 92        | 70-130           |  |
| 4-Bromofluorobenzene  | 96        | 70-130           |  |



## Client Sample ID: CCV Lab ID#: 1910127-05B

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100802 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/8/19 10:43 AM

| Compound                         | %Recovery |  |
|----------------------------------|-----------|--|
| Freon 12                         | 88        |  |
| Vinyl Chloride                   | 100       |  |
| Freon 11                         | 91        |  |
| Freon 113                        | 93        |  |
| 1,1-Dichloroethene               | 98        |  |
| 2-Propanol                       | 95        |  |
| Carbon Disulfide                 | 96        |  |
| Methylene Chloride               | 100       |  |
| Hexane                           | 98        |  |
| 1,1-Dichloroethane               | 99        |  |
| 2-Butanone (Methyl Ethyl Ketone) | 100       |  |
| Chloroform                       | 96        |  |
| 1,1,1-Trichloroethane            | 90        |  |
| Carbon Tetrachloride             | 92        |  |
| Benzene                          | 102       |  |
| 1,2-Dichloroethane               |           |  |
| Trichloroethene                  | 98        |  |
| 1,4-Dioxane                      | 101       |  |
| Toluene                          | 100       |  |
| 1,1,2-Trichloroethane            | 98        |  |
| Tetrachloroethene                | 98        |  |
| o-Xylene                         | 97        |  |
| TNMOC ref. to Heptane (MW=100)   | 100       |  |

| Surrogates            |           | Method |
|-----------------------|-----------|--------|
|                       | %Recovery | Limits |
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 92        | 70-130 |
| 4-Bromofluorobenzene  | 95        | 70-130 |



## Client Sample ID: LCS Lab ID#: 1910127-06A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100703 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/19 10:24 AM

| %Recovery  | Method<br>Limits                                                                                      |
|------------|-------------------------------------------------------------------------------------------------------|
| <u> </u>   | 70-130                                                                                                |
|            |                                                                                                       |
|            | 70-130                                                                                                |
|            | 70-130                                                                                                |
| 90         | 70-130                                                                                                |
| 94         | 70-130                                                                                                |
| 95         | 70-130                                                                                                |
| 95         | 70-130                                                                                                |
| 96         | 70-130                                                                                                |
| 99         | 70-130                                                                                                |
| 93         | 70-130                                                                                                |
| 103        | 70-130                                                                                                |
| 92         | 70-130                                                                                                |
| 90         | 70-130                                                                                                |
| 91         | 70-130                                                                                                |
| 99         | 70-130                                                                                                |
| 86         | 70-130                                                                                                |
| 96         | 70-130                                                                                                |
| 104        | 70-130                                                                                                |
| 97         | 70-130                                                                                                |
| 96         | 70-130                                                                                                |
| 97         | 70-130                                                                                                |
| 100        | 70-130                                                                                                |
| Not Spiked |                                                                                                       |
|            | 95<br>95<br>96<br>99<br>93<br>103<br>92<br>90<br>91<br>99<br>86<br>96<br>104<br>97<br>96<br>97<br>100 |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 99        | 70-130 |
| 1,2-Dichloroethane-d4 | 90        | 70-130 |
| 4-Bromofluorobenzene  | 95        | 70-130 |



## Client Sample ID: LCSD Lab ID#: 1910127-06AA

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100704 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/7/19 10:51 AM

|                                  |            | Method |
|----------------------------------|------------|--------|
| Compound                         | %Recovery  | Limits |
| Freon 12                         | 87         | 70-130 |
| Vinyl Chloride                   | 99         | 70-130 |
| Freon 11                         | 89         | 70-130 |
| Freon 113                        | 91         | 70-130 |
| 1,1-Dichloroethene               | 92         | 70-130 |
| 2-Propanol                       | 94         | 70-130 |
| Carbon Disulfide                 | 96         | 70-130 |
| Methylene Chloride               | 94         | 70-130 |
| Hexane                           | 97         | 70-130 |
| 1,1-Dichloroethane               | 94         | 70-130 |
| 2-Butanone (Methyl Ethyl Ketone) | 100        | 70-130 |
| Chloroform                       | 93         | 70-130 |
| 1,1,1-Trichloroethane            | 90         | 70-130 |
| Carbon Tetrachloride             | 91         | 70-130 |
| Benzene                          | 102        | 70-130 |
| 1,2-Dichloroethane               | 89         | 70-130 |
| Trichloroethene                  | 97         | 70-130 |
| 1,4-Dioxane                      | 105        | 70-130 |
| Toluene                          | 99         | 70-130 |
| 1,1,2-Trichloroethane            | 101        | 70-130 |
| Tetrachloroethene                | 99         | 70-130 |
| o-Xylene                         | 100        | 70-130 |
| TNMOC ref. to Heptane (MW=100)   | Not Spiked |        |
|                                  |            |        |

| Surrogates            |           | Method |
|-----------------------|-----------|--------|
|                       | %Recovery | Limits |
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 90        | 70-130 |
| 4-Bromofluorobenzene  | 98        | 70-130 |



## Client Sample ID: LCS Lab ID#: 1910127-06B

## **EPA METHOD TO-15 GC/MS FULL SCAN**

File Name: 17100803 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/8/19 11:09 AM

| Compound                         | %Recovery  | Method<br>Limits |
|----------------------------------|------------|------------------|
| Freon 12                         | 91         | 70-130           |
|                                  | * '        |                  |
| Vinyl Chloride                   | 101        | 70-130           |
| Freon 11                         | 90         | 70-130           |
| Freon 113                        | 92         | 70-130           |
| 1,1-Dichloroethene               | 94         | 70-130           |
| 2-Propanol                       | 97         | 70-130           |
| Carbon Disulfide                 | 98         | 70-130           |
| Methylene Chloride               | 98         | 70-130           |
| Hexane                           | 100        | 70-130           |
| 1,1-Dichloroethane               | 96         | 70-130           |
| 2-Butanone (Methyl Ethyl Ketone) | 105        | 70-130           |
| Chloroform                       | 97         | 70-130           |
| 1,1,1-Trichloroethane            | 92         | 70-130           |
| Carbon Tetrachloride             | 94         | 70-130           |
| Benzene                          | 99         | 70-130           |
| 1,2-Dichloroethane               | 87         | 70-130           |
| Trichloroethene                  | 96         | 70-130           |
| 1,4-Dioxane                      | 103        | 70-130           |
| Toluene                          | 98         | 70-130           |
| 1,1,2-Trichloroethane            | 101        | 70-130           |
| Tetrachloroethene                | 100        | 70-130           |
| o-Xylene                         | 100        | 70-130           |
| TNMOC ref. to Heptane (MW=100)   | Not Spiked |                  |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 99        | 70-130 |
| 1,2-Dichloroethane-d4 | 91        | 70-130 |
| 4-Bromofluorobenzene  | 98        | 70-130 |



## Client Sample ID: LCSD Lab ID#: 1910127-06BB

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17100804 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 10/8/19 11:36 AM

| Compound                         | %Recovery  | Method<br>Limits |
|----------------------------------|------------|------------------|
|                                  | 88         | 70-130           |
| Freon 12                         |            |                  |
| Vinyl Chloride                   | 97         | 70-130           |
| Freon 11                         | 88         | 70-130           |
| Freon 113                        | 90         | 70-130           |
| 1,1-Dichloroethene               | 92         | 70-130           |
| 2-Propanol                       | 94         | 70-130           |
| Carbon Disulfide                 | 96         | 70-130           |
| Methylene Chloride               | 94         | 70-130           |
| Hexane                           | 97         | 70-130           |
| 1,1-Dichloroethane               | 93         | 70-130           |
| 2-Butanone (Methyl Ethyl Ketone) | 104        | 70-130           |
| Chloroform                       | 93         | 70-130           |
| 1,1,1-Trichloroethane            | 91         | 70-130           |
| Carbon Tetrachloride             | 90         | 70-130           |
| Benzene                          | 104        | 70-130           |
| 1,2-Dichloroethane               | 89         | 70-130           |
| Trichloroethene                  | 100        | 70-130           |
| 1,4-Dioxane                      | 107        | 70-130           |
| Toluene                          | 101        | 70-130           |
| 1,1,2-Trichloroethane            | 97         | 70-130           |
| Tetrachloroethene                | 98         | 70-130           |
| o-Xylene                         | 99         | 70-130           |
| TNMOC ref. to Heptane (MW=100)   | Not Spiked |                  |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 102       | 70-130 |
| 1,2-Dichloroethane-d4 | 90        | 70-130 |
| 4-Bromofluorobenzene  | 98        | 70-130 |

| PAGE: 1      | 94-7501 |
|--------------|---------|
| DATE:        |         |
| AIR CHAIN OF | 1210161 |

| Reinquished by: (Signature) | cendusies by (ognature) | Palentished by (Senstine) | 35. | 44 | <b>3</b> | N | **** | 10 | 9 | <b>CO</b> | <b>G</b> |   | 4 | 3 OC_SVE_INF_GAC_100119 | 2 OC_SVE_MID_GAC_100119 | OC_SVE_EFF_GAC_100119 | ONLY SAMPLE ID                                          |                            | PEOD BREGIAL INSTRUCTIONS | SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY JOSEY) | (562) 756-8149                                                 | San Diego        | 1322 Scott St., Suite 104                | de maximis                                                         | aboratories, inc.                         | nvironmental                | alscience                   |
|-----------------------------|-------------------------|---------------------------|-----|----|----------|---|------|----|---|-----------|----------|---|---|-------------------------|-------------------------|-----------------------|---------------------------------------------------------|----------------------------|---------------------------|---------------------------------------------------|----------------------------------------------------------------|------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------------|
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | SP-INF-GAC              | SP-MID-GAC              | \$P-EFF-GAC           | FIELD ID / Point of Collection                          |                            |                           | □72HR 1275DAYS □1                                 | idinello@demaximis.com                                         | CA STATE         |                                          |                                                                    | TEL: (714) 895-5494 . FAX: (714) 894-7501 | GARDEN GROVE, CA 92841-1427 | 7440 LINCOLN WAY            |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | SV                      | SV                      | SV                    | (f) Indoor<br>(SV) Solf Vap.<br>(A) Ambient             | AlicType                   |                           | 10 DAYS                                           |                                                                | 92106            |                                          |                                                                    | 14) 894-7501                              | 1427                        |                             |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | 112651                  | ILISW                   | 112428                |                                                         |                            |                           |                                                   |                                                                |                  |                                          |                                                                    |                                           |                             |                             |
| Received by                 | Recipios                |                           |     |    |          |   |      |    |   |           |          |   |   | 11                      | 1,6                     | 1 1                   | Canister Flow Canister Size Controller IC# 6L or 1L ID# | ng Equipm                  |                           | 17                                                | PROJECT (                                                      | orr:<br>Whittier | 12520 W                                  | CLIENT PRO<br>Omega -                                              |                                           |                             |                             |
| Received by: (Signature)    | Peive (Dy: (Signature)  | Received by: (Signature)  |     |    |          |   |      |    |   |           |          |   |   | 542H                    | 13183                   | 23277                 | Controller                                              | and line                   |                           | المدانعا                                          | PROJECT CONTACT. Trent hen<br>Saudi edist made / signature)    |                  | PROJECT ADDRESS:<br>12520 Whittier Blvd. | CLIENT PROJECT NAME / NUMBER:<br>Ornega - OU1 SVE Mor              |                                           |                             | The<br>CI                   |
|                             |                         | 7-11                      |     |    |          |   |      |    |   |           |          |   |   | 10/1/2019               | 10/1/2019               | -1                    | Date                                                    | Stan                       |                           | Sche                                              | PROJECT CONTACT. Trent henderson thenderson@jacobandhefner.com |                  | d.                                       | CLIENT PROJECT NAME / NUMBER: Omega - OU1 SVE Monthly GAC Sampling |                                           |                             | JOTOTET                     |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | 54g                     | 1043                    | 1042                  | Time<br>(24hr clock)                                    | Start Sampling information |                           |                                                   | ienderson@jai                                                  | STATE:<br>CA     |                                          | AC Samplin                                                         |                                           |                             | •                           |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | -26                     | -26                     | -26                   | Canister<br>Pressure<br>("Hg)                           | mation                     |                           | 8                                                 | cobandhefner                                                   |                  |                                          | 9                                                                  |                                           |                             |                             |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   | 10/1/2019               | 10/1/2019               | 10                    | Ď                                                       |                            |                           |                                                   | .com                                                           | zie:<br>90602    |                                          |                                                                    |                                           |                             |                             |
| Custo                       | Date:                   | 2.   0.1<br>⊃arec         |     |    |          |   |      |    |   |           | ,        | * |   | 1646                    | 7P91                    | d hal                 | Time<br>(24hr clock)                                    | Stop Sampling Information  |                           |                                                   |                                                                | LAB US           | LAS CC                                   | P.O. NO.:                                                          | PAGE:                                     | DATE:                       | AIR CH                      |
| Custody Seal Intact?        |                         | 3/19                      |     |    |          |   |      |    |   |           |          |   |   | ,                       | Ċ                       | - 2                   | Canister<br>Pressure<br>("Hg)                           | rmation                    |                           |                                                   | Ш                                                              | AB USE ONLY      | LAB CONTACT OR QUOTE NO.                 | );                                                                 |                                           |                             | AIR CHAIN OF CUSTODY RECORD |
| al Int                      | Time                    | Ŧime:                     |     |    |          |   |      |    |   |           |          |   |   | ×                       | ×                       | ×                     | TO-15 (1                                                | FAL 2:3)                   |                           | REQU                                              |                                                                |                  | E NO.                                    |                                                                    |                                           | 10/01/19                    | CUSTC                       |
| act?                        |                         | 094D                      |     |    |          |   |      |    |   |           |          |   |   |                         |                         |                       |                                                         | ***                        |                           | REQUESTED ANALYSES                                |                                                                |                  |                                          |                                                                    | ÇF.                                       | 1/19                        | )DY RE                      |
|                             |                         |                           |     |    |          |   |      |    |   |           |          |   |   |                         |                         |                       |                                                         |                            |                           | ALYSES                                            |                                                                |                  |                                          |                                                                    | 1                                         |                             | CORD                        |

\$ 2 2 2

Y N(None Temp MA



11/15/2019 Ms. Jaime Dinello DeMaximis, Inc 1340 Reynolds Ave, Suite 105

Irvine CA 92614

Project Name: Omega - OU1 SVE Monthly GAC Sampling

Project #:

Workorder #: 1911148

Dear Ms. Jaime Dinello

The following report includes the data for the above referenced project for sample(s) received on 11/7/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

July Butte

**Project Manager** 



#### **WORK ORDER #:** 1911148

Work Order Summary

**CLIENT: BILL TO:** Mr. Tom Dorsey Ms. Jaime Dinello

DeMaximis, Inc

Omega Chemical Site Environmental

1340 Reynolds Ave, Suite 105 Remediation Trust Irvine, CA 92614 1322 Scott St. Suite 104

PHONE: 949.679.9290 P.O. #

FAX: 949,679,9078 PROJECT # Omega - OU1 SVE Monthly GAC

DATE RECEIVED: 11/07/2019 Sampling Kelly Buettner **CONTACT:** DATE COMPLETED: 11/14/2019

|            |                       |             | RECEIPT    | FINAL           |
|------------|-----------------------|-------------|------------|-----------------|
| FRACTION # | NAME                  | <u>TEST</u> | VAC./PRES. | <b>PRESSURE</b> |
| 01A        | OC_SVE_EFF_GAC_110419 | TO-15       | 5.5 "Hg    | 15 psi          |
| 02A        | OC_SVE_MID_GAC_110419 | TO-15       | 5.0 "Hg    | 15 psi          |
| 03A        | OC_SVE_INF_GAC_110419 | TO-15       | 6.0 "Hg    | 15 psi          |
| 04A        | Lab Blank             | TO-15       | NA         | NA              |
| 05A        | CCV                   | TO-15       | NA         | NA              |
| 06A        | LCS                   | TO-15       | NA         | NA              |
| 06AA       | LCSD                  | TO-15       | NA         | NA              |

|               | the | idi / | layer |       |          |
|---------------|-----|-------|-------|-------|----------|
| CERTIFIED BY: | 0   |       | 0     | DATE: | 11/14/19 |

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP - CA009332019-11, VA NELAP - 460197, WA NELAP - C935

> Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.



#### LABORATORY NARRATIVE EPA Method TO-15 DeMaximis, Inc Workorder# 1911148

Three 1 Liter Summa Canister samples were received on November 07, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

#### **Receiving Notes**

The samples arrived at the laboratory without a Chain of Custody (COC). The client subsequently provided the COC by e-mail on 11/08/19.

The Chain of Custody (COC) was not relinquished properly. A signature, date and time were not provided by the field sampler.

#### **Analytical Notes**

The TNMOC concentration was calculated by taking the total area counts in the sample and quantitating the area based on the response factor of TNMOC ref. to Heptane (MW=100).

## **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.
  - M Reported value may be biased due to apparent matrix interferences.
  - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: OC\_SVE\_EFF\_GAC\_110419

Lab ID#: 1911148-01A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |  |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|--|
| Freon 11                         | 1.2                  | 2.2              | 6.9                   | 12                |  |
| 1,1-Dichloroethene               | 1.2                  | 2.2              | 4.9                   | 8.7               |  |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 68               | 14                    | 200               |  |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 280              | 100                   | 1100              |  |

Client Sample ID: OC\_SVE\_MID\_GAC\_110419

Lab ID#: 1911148-02A

| Compound                       | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|--------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                       | 1.2                  | 1.8              | 6.8                   | 10                |
| Freon 113                      | 1.2                  | 1.5              | 9.3                   | 12                |
| 1,1-Dichloroethene             | 1.2                  | 2.7              | 4.8                   | 10                |
| Tetrachloroethene              | 1.2                  | 1.2              | 8.2                   | 8.4               |
| TNMOC ref. to Heptane (MW=100) | 24                   | 32               | 99                    | 130               |

Client Sample ID: OC\_SVE\_INF\_GAC\_110419

Lab ID#: 1911148-03A

| Compound                       | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|--------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                       | 1.3                  | 1.4              | 7.1                   | 8.0               |
| Freon 113                      | 1.3                  | 6.0              | 9.6                   | 46                |
| 1,1-Dichloroethene             | 1.3                  | 2.6              | 5.0                   | 10                |
| Hexane                         | 1.3                  | 24               | 4.4                   | 84                |
| 1,1,1-Trichloroethane          | 1.3                  | 8.6              | 6.9                   | 47                |
| Trichloroethene                | 1.3                  | 5.8              | 6.8                   | 31                |
| Tetrachloroethene              | 1.3                  | 160              | 8.5                   | 1100              |
| TNMOC ref. to Heptane (MW=100) | 25                   | 700              | 100                   | 2900              |



## Client Sample ID: OC\_SVE\_EFF\_GAC\_110419 Lab ID#: 1911148-01A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17111208 Date of Collection: 11/4/19 11:18:00 AM Dil. Factor: 2.47 Date of Analysis: 11/12/19 01:07 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.1                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.2                   | Not Detected      |
| Freon 11                         | 1.2                  | 2.2              | 6.9                   | 12                |
| Freon 113                        | 1.2                  | Not Detected     | 9.5                   | Not Detected      |
| 1,1-Dichloroethene               | 1.2                  | 2.2              | 4.9                   | 8.7               |
| 2-Propanol                       | 4.9                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 4.9                  | Not Detected     | 15                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 43                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.4                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 5.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 68               | 14                    | 200               |
| Chloroform                       | 1.2                  | Not Detected     | 6.0                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected     | 6.7                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.8                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 3.9                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 5.0                   | Not Detected      |
| Trichloroethene                  | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| 1,4-Dioxane                      | 4.9                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.6                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.7                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | Not Detected     | 8.4                   | Not Detected      |
| o-Xylene                         | 1.2                  | Not Detected     | 5.4                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 280              | 100                   | 1100              |

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           | Method |  |
|----------------------------------------|-----------|--------|--|
| Surrogates                             | %Recovery | Limits |  |
| Toluene-d8                             | 104       | 70-130 |  |
| 1,2-Dichloroethane-d4                  | 97        | 70-130 |  |
| 4-Bromofluorobenzene                   | 96        | 70-130 |  |



## Client Sample ID: OC\_SVE\_MID\_GAC\_110419 Lab ID#: 1911148-02A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17111209 Date of Collection: 11/4/19 11:28:00 AM Dil. Factor: 2.42 Date of Analysis: 11/12/19 01:35 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.0                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.1                   | Not Detected      |
| Freon 11                         | 1.2                  | 1.8              | 6.8                   | 10                |
| Freon 113                        | 1.2                  | 1.5              | 9.3                   | 12                |
| 1,1-Dichloroethene               | 1.2                  | 2.7              | 4.8                   | 10                |
| 2-Propanol                       | 4.8                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 4.8                  | Not Detected     | 15                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 42                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.3                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.8                  | Not Detected     | 14                    | Not Detected      |
| Chloroform                       | 1.2                  | Not Detected     | 5.9                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.6                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 3.9                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| Trichloroethene                  | 1.2                  | Not Detected     | 6.5                   | Not Detected      |
| 1,4-Dioxane                      | 4.8                  | Not Detected     | 17                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.6                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | 1.2              | 8.2                   | 8.4               |
| o-Xylene                         | 1.2                  | Not Detected     | 5.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 32               | 99                    | 130               |

| Surrogates            | %Recovery | Method<br>Limits |
|-----------------------|-----------|------------------|
| Toluene-d8            | 103       | 70-130           |
| 1,2-Dichloroethane-d4 | 98        | 70-130           |
| 4-Bromofluorobenzene  | 94        | 70-130           |



## Client Sample ID: OC\_SVE\_INF\_GAC\_110419 Lab ID#: 1911148-03A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17111219 Date of Collection: 11/4/19 11:36:00 AM Dil. Factor: 2.52 Date of Analysis: 11/12/19 06:47 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.3                  | Not Detected     | 6.2                   | Not Detected      |
| Vinyl Chloride                   | 1.3                  | Not Detected     | 3.2                   | Not Detected      |
| Freon 11                         | 1.3                  | 1.4              | 7.1                   | 8.0               |
| Freon 113                        | 1.3                  | 6.0              | 9.6                   | 46                |
| 1,1-Dichloroethene               | 1.3                  | 2.6              | 5.0                   | 10                |
| 2-Propanol                       | 5.0                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 5.0                  | Not Detected     | 16                    | Not Detected      |
| Methylene Chloride               | 13                   | Not Detected     | 44                    | Not Detected      |
| Hexane                           | 1.3                  | 24               | 4.4                   | 84                |
| 1,1-Dichloroethane               | 1.3                  | Not Detected     | 5.1                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | Not Detected     | 15                    | Not Detected      |
| Chloroform                       | 1.3                  | Not Detected     | 6.2                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.3                  | 8.6              | 6.9                   | 47                |
| Carbon Tetrachloride             | 1.3                  | Not Detected     | 7.9                   | Not Detected      |
| Benzene                          | 1.3                  | Not Detected     | 4.0                   | Not Detected      |
| 1,2-Dichloroethane               | 1.3                  | Not Detected     | 5.1                   | Not Detected      |
| Trichloroethene                  | 1.3                  | 5.8              | 6.8                   | 31                |
| 1,4-Dioxane                      | 5.0                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.3                  | Not Detected     | 4.7                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.3                  | Not Detected     | 6.9                   | Not Detected      |
| Tetrachloroethene                | 1.3                  | 160              | 8.5                   | 1100              |
| o-Xylene                         | 1.3                  | Not Detected     | 5.5                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 700              | 100                   | 2900              |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 104       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 100       | 70-130 |  |
| 4-Bromofluorobenzene  | 95        | 70-130 |  |



## Client Sample ID: Lab Blank Lab ID#: 1911148-04A

## **EPA METHOD TO-15 GC/MS FULL SCAN**

| File Name:   | 17111206 | Date of Collection: NA              |
|--------------|----------|-------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 11/12/19 11:40 AM |

|                                  |                      |                  | . ,                   |                   |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
| Freon 12                         | 0.50                 | Not Detected     | 2.5                   | Not Detected      |
| Vinyl Chloride                   | 0.50                 | Not Detected     | 1.3                   | Not Detected      |
| Freon 11                         | 0.50                 | Not Detected     | 2.8                   | Not Detected      |
| Freon 113                        | 0.50                 | Not Detected     | 3.8                   | Not Detected      |
| 1,1-Dichloroethene               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Propanol                       | 2.0                  | Not Detected     | 4.9                   | Not Detected      |
| Carbon Disulfide                 | 2.0                  | Not Detected     | 6.2                   | Not Detected      |
| Methylene Chloride               | 5.0                  | Not Detected     | 17                    | Not Detected      |
| Hexane                           | 0.50                 | Not Detected     | 1.8                   | Not Detected      |
| 1,1-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 2.0                  | Not Detected     | 5.9                   | Not Detected      |
| Chloroform                       | 0.50                 | Not Detected     | 2.4                   | Not Detected      |
| 1,1,1-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Carbon Tetrachloride             | 0.50                 | Not Detected     | 3.1                   | Not Detected      |
| Benzene                          | 0.50                 | Not Detected     | 1.6                   | Not Detected      |
| 1,2-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| Trichloroethene                  | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| 1,4-Dioxane                      | 2.0                  | Not Detected     | 7.2                   | Not Detected      |
| Toluene                          | 0.50                 | Not Detected     | 1.9                   | Not Detected      |
| 1,1,2-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Tetrachloroethene                | 0.50                 | Not Detected     | 3.4                   | Not Detected      |
| o-Xylene                         | 0.50                 | Not Detected     | 2.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 10                   | Not Detected     | 41                    | Not Detected      |
|                                  |                      |                  |                       |                   |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 101       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 98        | 70-130 |  |
| 4-Bromofluorobenzene  | 96        | 70-130 |  |



## Client Sample ID: CCV Lab ID#: 1911148-05A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17111202 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/12/19 09:03 AM

| Compound                         | %Recovery |  |
|----------------------------------|-----------|--|
| Freon 12                         | 91        |  |
| Vinyl Chloride                   | 89        |  |
| Freon 11                         | 92        |  |
| Freon 113                        | 83        |  |
| 1,1-Dichloroethene               | 82        |  |
| 2-Propanol                       | 89        |  |
| Carbon Disulfide                 | 86        |  |
| Methylene Chloride               | 101       |  |
| Hexane                           | 97        |  |
| 1,1-Dichloroethane               | 94        |  |
| 2-Butanone (Methyl Ethyl Ketone) | 96        |  |
| Chloroform                       | 96        |  |
| 1,1,1-Trichloroethane            | 95        |  |
| Carbon Tetrachloride             | 96        |  |
| Benzene                          | 98        |  |
| 1,2-Dichloroethane               | 93        |  |
| Trichloroethene                  | 95        |  |
| 1,4-Dioxane                      | 104       |  |
| Toluene                          | 102       |  |
| 1,1,2-Trichloroethane            | 95        |  |
| Tetrachloroethene                | 93        |  |
| o-Xylene                         | 98        |  |
| TNMOC ref. to Heptane (MW=100)   | 100       |  |

| , , , , , , , , , , , , , , , , , , , |           | Method |  |
|---------------------------------------|-----------|--------|--|
| Surrogates                            | %Recovery | Limits |  |
| Toluene-d8                            | 102       | 70-130 |  |
| 1,2-Dichloroethane-d4                 | 102       | 70-130 |  |
| 4-Bromofluorobenzene                  | 97        | 70-130 |  |



#### Client Sample ID: LCS Lab ID#: 1911148-06A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17111203 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/12/19 09:30 AM

| 70-130<br>70-130<br>70-130<br>70-130<br>70-130 |
|------------------------------------------------|
| 70-130<br>70-130                               |
| 70-130                                         |
|                                                |
| 70 120                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
| 70-130                                         |
|                                                |
|                                                |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 103       | 70-130 |
| 4-Bromofluorobenzene  | 96        | 70-130 |



#### Client Sample ID: LCSD Lab ID#: 1911148-06AA

#### **EPA METHOD TO-15 GC/MS FULL SCAN**

File Name: 17111204 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 11/12/19 09:57 AM

| Compound                         | %Recovery  | Method<br>Limits |
|----------------------------------|------------|------------------|
| Freon 12                         | 89         | 70-130           |
|                                  |            |                  |
| Vinyl Chloride                   | 91         | 70-130           |
| Freon 11                         | 91         | 70-130           |
| Freon 113                        | 84         | 70-130           |
| 1,1-Dichloroethene               | 83         | 70-130           |
| 2-Propanol                       | 93         | 70-130           |
| Carbon Disulfide                 | 87         | 70-130           |
| Methylene Chloride               | 96         | 70-130           |
| Hexane                           | 97         | 70-130           |
| 1,1-Dichloroethane               | 92         | 70-130           |
| 2-Butanone (Methyl Ethyl Ketone) | 97         | 70-130           |
| Chloroform                       | 96         | 70-130           |
| 1,1,1-Trichloroethane            | 96         | 70-130           |
| Carbon Tetrachloride             | 97         | 70-130           |
| Benzene                          | 98         | 70-130           |
| 1,2-Dichloroethane               | 93         | 70-130           |
| Trichloroethene                  | 98         | 70-130           |
| 1,4-Dioxane                      | 105        | 70-130           |
| Toluene                          | 102        | 70-130           |
| 1,1,2-Trichloroethane            | 98         | 70-130           |
| Tetrachloroethene                | 89         | 70-130           |
| o-Xylene                         | 100        | 70-130           |
| TNMOC ref. to Heptane (MW=100)   | Not Spiked |                  |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 104       | 70-130 |
| 1,2-Dichloroethane-d4 | 100       | 70-130 |
| 4-Bromofluorobenzene  | 96        | 70-130 |

alscience nvironmental aboratories, inc.

GARDEN GROVE, CA 92841-1427 TEL: (714) 895-8494 , FAX: (714) 884-7501 7440 LINCOLN WAY

1911148

DATE: AIR CHAIN OF CUSTODY RECORD 11/04/19

유 1

|                              |                             | <b></b>                  |          |   |          |   |    |     |   |   |          |   |   |     |   | <i>€</i>              | 3                     | OH<br>P               | ,                                              |                           |                            |                                                                |                  |                                        |                                                                  |
|------------------------------|-----------------------------|--------------------------|----------|---|----------|---|----|-----|---|---|----------|---|---|-----|---|-----------------------|-----------------------|-----------------------|------------------------------------------------|---------------------------|----------------------------|----------------------------------------------------------------|------------------|----------------------------------------|------------------------------------------------------------------|
| Relinqu                      | Relinqu                     | Kelingushed              |          | ᇙ | <u>=</u> | ü | 12 | === | ð | စ | <b>∞</b> | 7 | 6 | (Ji | 4 | C.                    | 2                     | -                     | CHICA<br>CASE<br>TYS                           | SPECIAL INS               | S 🗆                        | (562)                                                          | om:<br>San Diego | 1322 S                                 | de ma                                                            |
| Relinquished by: (Signeture) | Relinquished by (Signature) | ushed by Joghanua)       |          |   |          |   |    |     |   |   |          |   |   |     |   | OC_SVE_INF_GAC_110419 | OC_SVE_MID_GAC_110419 | OC_SVE_EFF_GAC_110419 | SAMPLE ID                                      | BECIAL INGTRUCTIONS       | SAME DAY 24 HR 348 HR 37.  | 3149                                                           | )iego            | ADDRESS<br>1322 Scott St., Suite 104   | de maximís                                                       |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | SP-INF-GAC            | SP-MID-GAC            | SP-EFF-GAC            | FIELD ID / Point of Collection                 |                           | 10 72 HR JETS DAYS 10 DAYS | ыми:<br>jdinello@demaximis.com                                 | STATE<br>CA      |                                        |                                                                  |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | SV                    | SV                    | SV                    | (l) Indoor<br>(SV) Soil Vap.<br>(A) Ambient    |                           | DAYS                       |                                                                | 92106            |                                        |                                                                  |
|                              | 4                           |                          |          |   |          |   |    |     |   | ÷ |          |   |   |     |   | 11421                 | 111789                | 112639                | Canister<br>ID#                                | Samplir                   |                            |                                                                |                  |                                        |                                                                  |
| Received by                  | Received by                 | Received by              |          |   |          |   |    |     |   |   |          |   |   |     |   | î                     | 1,-                   | f.,                   | Canister<br>Size<br>6L or 1L                   |                           | 5                          | PROJECT C                                                      | whittier         | 12520 W                                | CUENT PRO.                                                       |
| Received by: (Signature)     | Received by: (Signature)    | Received by: (Signature) |          |   |          |   |    |     |   |   |          |   |   |     |   | 2378)                 | 24324                 | 23176                 | Flow<br>Controller<br>ID#                      | ant force                 | Khalid I                   | ONTACT: TIEN                                                   |                  | PROJECT ADDRESS<br>12520 Whittier Blvd | OU1 SVE                                                          |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | 11/4/2019             | 11/4/20019            | 11/4/2019             | Date                                           | Start S                   | Azhar                      | якошест сомтист. Trent henderson thenderson@jecobendhefner.com |                  | 1,                                     | CUENT PROJECT NAME INJURES: Omega - OU1 SVE Monthly GAC Sampling |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | וטו                   | 1127                  | 1113                  | Time<br>(24hr clock)                           | opu Guydur                |                            | enderson@jec                                                   | CA STATE         |                                        | C Sampling                                                       |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | -28.5                 | -29                   | -29                   | Canister Time Pressure Date (24hr clock) ("Hg) | mation                    | A                          | obandhefner.                                                   |                  |                                        |                                                                  |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | 11/4/2019             | 11/4/2019             | 11/4/2019             | Q                                              |                           |                            | om                                                             | 2IP:<br>90602    |                                        |                                                                  |
| Date:                        | Date:                       | Date:                    |          |   |          |   |    |     |   |   |          |   |   |     |   | 112h                  | 821)                  | 8111                  | Time<br>(24hr dock)                            | Stop Sampling Information |                            |                                                                | LAB USE ONLY     | UAB CO                                 | PO 40                                                            |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   | -8                    | -5                    | -5                    | Canister<br>Pressure<br>("Hg)                  | matter                    |                            | 片                                                              | ONE Y            | LAB CONTACT OR QUOTE NO.               |                                                                  |
| 1                            | Time:                       | Tkme:                    |          |   |          |   |    |     |   |   |          |   |   |     |   | ×                     | ×                     | ×                     | TO-15 (T                                       | AL 2.3)                   | REC                        |                                                                |                  | Ö                                      | ı                                                                |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   |                       |                       |                       |                                                |                           | MEST                       |                                                                |                  |                                        |                                                                  |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   |                       |                       |                       |                                                |                           | REQUESTED ANALYSES         | H                                                              |                  |                                        |                                                                  |
|                              |                             |                          |          |   |          |   |    |     |   |   |          |   |   |     |   |                       |                       |                       |                                                |                           | ALYS!                      |                                                                |                  |                                        |                                                                  |
|                              |                             |                          | <u> </u> |   |          |   |    |     |   |   |          |   |   |     |   |                       |                       |                       |                                                |                           | 8                          | A                                                              |                  |                                        |                                                                  |

Samples received on 11/7/15, coc on 11/8/19



12/16/2019 Ms. Jaime Dinello DeMaximis, Inc 1340 Reynolds Ave, Suite 105

Irvine CA 92614

Project Name: Omega - OU1 SVE Monthly GAC Sampling

Project #:

Workorder #: 1912185

Dear Ms. Jaime Dinello

The following report includes the data for the above referenced project for sample(s) received on 12/9/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

July Butte

**Project Manager** 



DATE COMPLETED:

#### **WORK ORDER #: 1912185**

Work Order Summary

CLIENT: Ms. Jaime Dinello BILL TO: Mr. Tom Dorsey

DeMaximis, Inc

1340 Reynolds Ave, Suite 105

Irvine, CA 92614

12/16/2019

1322 Scott St.

Remediation Trust

Omega Chemical Site Environmental

Suite 104

PHONE: 949.679.9290 P.O.#

FAX: 949.679.9078 PROJECT # Omega - OU1 SVE Monthly GAC

**DATE RECEIVED:** 12/09/2019 CONTACT: Sampling Kelly Buettner

**FINAL** RECEIPT **PRESSURE FRACTION# TEST** VAC./PRES. OC\_SVE\_EFF\_GAC\_120319 TO-15 5.3 "Hg 01A 15.6 psi 02A OC\_SVE\_MID\_GAC\_120319 TO-15 4.7 "Hg 15.4 psi OC\_SVE\_INF\_GAC\_120319 5.7 "Hg 15.2 psi 03A TO-15 04A Lab Blank TO-15 NA NA 05A **CCV** TO-15 NA NA 06A LCS TO-15 NA NA 06AA **LCSD** TO-15 NA NA

|               | 1 | eide flages |                |  |
|---------------|---|-------------|----------------|--|
| CERTIFIED BY: | 0 | 00          | DATE: 12/16/19 |  |

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.



#### LABORATORY NARRATIVE EPA Method TO-15 DeMaximis, Inc Workorder# 1912185

Three 1 Liter Summa Canister samples were received on December 09, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

#### **Receiving Notes**

There were no receiving discrepancies.

#### **Analytical Notes**

The TNMOC concentration was calculated by taking the total area counts in the sample and quantitating the area based on the response factor of TNMOC ref. to Heptane (MW=100).

#### **Definition of Data Qualifying Flags**

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.
  - M Reported value may be biased due to apparent matrix interferences.
  - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



## **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: OC\_SVE\_EFF\_GAC\_120319

Lab ID#: 1912185-01A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                         | 1.2                  | 2.2              | 7.0                   | 13                |
| Freon 113                        | 1.2                  | 1.4              | 9.6                   | 11                |
| 1,1-Dichloroethene               | 1.2                  | 2.8              | 5.0                   | 11                |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | 14               | 15                    | 40                |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 54               | 100                   | 220               |

Client Sample ID: OC\_SVE\_MID\_GAC\_120319

Lab ID#: 1912185-02A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                         | 1.2                  | 1.5              | 6.8                   | 8.2               |
| Freon 113                        | 1.2                  | 1.8              | 9.3                   | 14                |
| 1,1-Dichloroethene               | 1.2                  | 2.1              | 4.8                   | 8.4               |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 12               | 14                    | 37                |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 41               | 99                    | 170               |

Client Sample ID: OC\_SVE\_INF\_GAC\_120319

Lab ID#: 1912185-03A

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 11                         | 1.2                  | 1.5              | 7.0                   | 8.3               |
| Freon 113                        | 1.2                  | 5.9              | 9.6                   | 45                |
| 1,1-Dichloroethene               | 1.2                  | 2.2              | 5.0                   | 8.6               |
| Hexane                           | 1.2                  | 7.7              | 4.4                   | 27                |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | 17               | 15                    | 50                |
| 1,1,1-Trichloroethane            | 1.2                  | 8.6              | 6.8                   | 47                |
| Trichloroethene                  | 1.2                  | 4.4              | 6.7                   | 24                |
| Tetrachloroethene                | 1.2                  | 83               | 8.5                   | 560               |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 420              | 100                   | 1700              |



#### Client Sample ID: OC\_SVE\_EFF\_GAC\_120319 Lab ID#: 1912185-01A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121212 Date of Collection: 12/3/19 12:07:00 PM
Dil. Factor: 2.50 Date of Analysis: 12/12/19 04:16 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.2                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.2                   | Not Detected      |
| Freon 11                         | 1.2                  | 2.2              | 7.0                   | 13                |
| Freon 113                        | 1.2                  | 1.4              | 9.6                   | 11                |
| 1,1-Dichloroethene               | 1.2                  | 2.8              | 5.0                   | 11                |
| 2-Propanol                       | 5.0                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 5.0                  | Not Detected     | 16                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 43                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.4                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 5.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | 14               | 15                    | 40                |
| Chloroform                       | 1.2                  | Not Detected     | 6.1                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected     | 6.8                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.9                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 4.0                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 5.0                   | Not Detected      |
| Trichloroethene                  | 1.2                  | Not Detected     | 6.7                   | Not Detected      |
| 1,4-Dioxane                      | 5.0                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.7                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.8                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | Not Detected     | 8.5                   | Not Detected      |
| o-Xylene                         | 1.2                  | Not Detected     | 5.4                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 54               | 100                   | 220               |

#### **Container Type: 1 Liter Summa Canister**

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 98        | 70-130 |
| 1,2-Dichloroethane-d4 | 128       | 70-130 |
| 4-Bromofluorobenzene  | 101       | 70-130 |



#### Client Sample ID: OC\_SVE\_MID\_GAC\_120319 Lab ID#: 1912185-02A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121213 Date of Collection: 12/3/19 12:08:00 PM Dil. Factor: 2.43 Date of Analysis: 12/12/19 04:45 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.0                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.1                   | Not Detected      |
| Freon 11                         | 1.2                  | 1.5              | 6.8                   | 8.2               |
| Freon 113                        | 1.2                  | 1.8              | 9.3                   | 14                |
| 1,1-Dichloroethene               | 1.2                  | 2.1              | 4.8                   | 8.4               |
| 2-Propanol                       | 4.9                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 4.9                  | Not Detected     | 15                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 42                    | Not Detected      |
| Hexane                           | 1.2                  | Not Detected     | 4.3                   | Not Detected      |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 4.9                  | 12               | 14                    | 37                |
| Chloroform                       | 1.2                  | Not Detected     | 5.9                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.6                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 3.9                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 4.9                   | Not Detected      |
| Trichloroethene                  | 1.2                  | Not Detected     | 6.5                   | Not Detected      |
| 1,4-Dioxane                      | 4.9                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.6                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.6                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | Not Detected     | 8.2                   | Not Detected      |
| o-Xylene                         | 1.2                  | Not Detected     | 5.3                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 24                   | 41               | 99                    | 170               |

#### **Container Type: 1 Liter Summa Canister**

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 103       | 70-130 |
| 1,2-Dichloroethane-d4 | 124       | 70-130 |
| 4-Bromofluorobenzene  | 101       | 70-130 |



#### Client Sample ID: OC\_SVE\_INF\_GAC\_120319 Lab ID#: 1912185-03A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121214 Date of Collection: 12/3/19 12:09:00 PM Dil. Factor: 2.51 Date of Analysis: 12/12/19 05:13 PM

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 1.2                  | Not Detected     | 6.2                   | Not Detected      |
| Vinyl Chloride                   | 1.2                  | Not Detected     | 3.2                   | Not Detected      |
| Freon 11                         | 1.2                  | 1.5              | 7.0                   | 8.3               |
| Freon 113                        | 1.2                  | 5.9              | 9.6                   | 45                |
| 1,1-Dichloroethene               | 1.2                  | 2.2              | 5.0                   | 8.6               |
| 2-Propanol                       | 5.0                  | Not Detected     | 12                    | Not Detected      |
| Carbon Disulfide                 | 5.0                  | Not Detected     | 16                    | Not Detected      |
| Methylene Chloride               | 12                   | Not Detected     | 44                    | Not Detected      |
| Hexane                           | 1.2                  | 7.7              | 4.4                   | 27                |
| 1,1-Dichloroethane               | 1.2                  | Not Detected     | 5.1                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 5.0                  | 17               | 15                    | 50                |
| Chloroform                       | 1.2                  | Not Detected     | 6.1                   | Not Detected      |
| 1,1,1-Trichloroethane            | 1.2                  | 8.6              | 6.8                   | 47                |
| Carbon Tetrachloride             | 1.2                  | Not Detected     | 7.9                   | Not Detected      |
| Benzene                          | 1.2                  | Not Detected     | 4.0                   | Not Detected      |
| 1,2-Dichloroethane               | 1.2                  | Not Detected     | 5.1                   | Not Detected      |
| Trichloroethene                  | 1.2                  | 4.4              | 6.7                   | 24                |
| 1,4-Dioxane                      | 5.0                  | Not Detected     | 18                    | Not Detected      |
| Toluene                          | 1.2                  | Not Detected     | 4.7                   | Not Detected      |
| 1,1,2-Trichloroethane            | 1.2                  | Not Detected     | 6.8                   | Not Detected      |
| Tetrachloroethene                | 1.2                  | 83               | 8.5                   | 560               |
| o-Xylene                         | 1.2                  | Not Detected     | 5.4                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 25                   | 420              | 100                   | 1700              |

#### **Container Type: 1 Liter Summa Canister**

| 3,600 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 20 |           | Method<br>Limits |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|--|
| Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | %Recovery |                  |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98        | 70-130           |  |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127       | 70-130           |  |
| 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100       | 70-130           |  |



#### Client Sample ID: Lab Blank Lab ID#: 1912185-04A

#### EPA METHOD TO-15 GC/MS FULL SCAN

| File Name:   | 17121207 | Date of Collection: NA              |
|--------------|----------|-------------------------------------|
| Dil. Factor: | 1.00     | Date of Analysis: 12/12/19 12:54 PM |

| Compound                         | Rpt. Limit<br>(ppbv) | Amount<br>(ppbv) | Rpt. Limit<br>(ug/m3) | Amount<br>(ug/m3) |
|----------------------------------|----------------------|------------------|-----------------------|-------------------|
| Freon 12                         | 0.50                 | Not Detected     | 2.5                   | Not Detected      |
| Vinyl Chloride                   | 0.50                 | Not Detected     | 1.3                   | Not Detected      |
| Freon 11                         | 0.50                 | Not Detected     | 2.8                   | Not Detected      |
| Freon 113                        | 0.50                 | Not Detected     | 3.8                   | Not Detected      |
| 1,1-Dichloroethene               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Propanol                       | 2.0                  | Not Detected     | 4.9                   | Not Detected      |
| Carbon Disulfide                 | 2.0                  | Not Detected     | 6.2                   | Not Detected      |
| Methylene Chloride               | 5.0                  | Not Detected     | 17                    | Not Detected      |
| Hexane                           | 0.50                 | Not Detected     | 1.8                   | Not Detected      |
| 1,1-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| 2-Butanone (Methyl Ethyl Ketone) | 2.0                  | Not Detected     | 5.9                   | Not Detected      |
| Chloroform                       | 0.50                 | Not Detected     | 2.4                   | Not Detected      |
| 1,1,1-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Carbon Tetrachloride             | 0.50                 | Not Detected     | 3.1                   | Not Detected      |
| Benzene                          | 0.50                 | Not Detected     | 1.6                   | Not Detected      |
| 1,2-Dichloroethane               | 0.50                 | Not Detected     | 2.0                   | Not Detected      |
| Trichloroethene                  | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| 1,4-Dioxane                      | 2.0                  | Not Detected     | 7.2                   | Not Detected      |
| Toluene                          | 0.50                 | Not Detected     | 1.9                   | Not Detected      |
| 1,1,2-Trichloroethane            | 0.50                 | Not Detected     | 2.7                   | Not Detected      |
| Tetrachloroethene                | 0.50                 | Not Detected     | 3.4                   | Not Detected      |
| o-Xylene                         | 0.50                 | Not Detected     | 2.2                   | Not Detected      |
| TNMOC ref. to Heptane (MW=100)   | 10                   | Not Detected     | 41                    | Not Detected      |

|                       |           | Method |  |
|-----------------------|-----------|--------|--|
| Surrogates            | %Recovery | Limits |  |
| Toluene-d8            | 100       | 70-130 |  |
| 1,2-Dichloroethane-d4 | 119       | 70-130 |  |
| 4-Bromofluorobenzene  | 99        | 70-130 |  |



#### Client Sample ID: CCV Lab ID#: 1912185-05A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121202 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/12/19 09:57 AM

| Compound                         | %Recovery |   |
|----------------------------------|-----------|---|
| Freon 12                         | 112       | - |
| Vinyl Chloride                   | 80        |   |
| Freon 11                         | 122       |   |
| Freon 113                        | 99        |   |
| 1,1-Dichloroethene               | 85        |   |
| 2-Propanol                       | 80        |   |
| Carbon Disulfide                 | 79        |   |
| Methylene Chloride               | 92        |   |
| Hexane                           | 80        |   |
| 1,1-Dichloroethane               | 92        |   |
| 2-Butanone (Methyl Ethyl Ketone) | 92        |   |
| Chloroform                       | 106       |   |
| 1,1,1-Trichloroethane            | 123       |   |
| Carbon Tetrachloride             | 126       |   |
| Benzene                          | 92        |   |
| 1,2-Dichloroethane               | 118       |   |
| Trichloroethene                  | 101       |   |
| 1,4-Dioxane                      | 96        |   |
| Toluene                          | 102       |   |
| 1,1,2-Trichloroethane            | 93        |   |
| Tetrachloroethene                | 101       |   |
| o-Xylene                         | 102       |   |
| TNMOC ref. to Heptane (MW=100)   | 100       |   |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 101       | 70-130 |
| 1,2-Dichloroethane-d4 | 125       | 70-130 |
| 4-Bromofluorobenzene  | 105       | 70-130 |



#### Client Sample ID: LCS Lab ID#: 1912185-06A

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121203 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/12/19 10:24 AM

| Compound                          | %Recovery  | Method<br>Limits |
|-----------------------------------|------------|------------------|
| Freon 12                          | 107        | 70-130           |
| Vinyl Chloride                    | 76         | 70-130           |
| Freon 11                          | 122        | 70-130           |
| Freon 113                         | 94         | 70-130           |
| 1,1-Dichloroethene                | 79         | 70-130<br>70-130 |
| 2-Propanol                        | 82         | 70-130<br>70-130 |
| Carbon Disulfide                  | 79         | 70-130           |
| Methylene Chloride                | 86         | 70-130           |
| Hexane                            | 79         | 70-130           |
| 1,1-Dichloroethane                | 86         | 70-130           |
| 2-Butanone (Methyl Ethyl Ketone)  | 85         | 70-130           |
| Chloroform                        | 104        | 70-130           |
| 1,1,1-Trichloroethane             | 118        | 70-130           |
| Carbon Tetrachloride              | 123        | 70-130           |
| Benzene                           | 90         | 70-130           |
| 1,2-Dichloroethane                | 111        | 70-130           |
| Trichloroethene                   | 97         | 70-130           |
| 1,4-Dioxane                       | 99         | 70-130           |
| Toluene                           | 98         | 70-130           |
| 1,1,2-Trichloroethane             | 90         | 70-130           |
| Tetrachloroethene                 |            | 70-130           |
| o-Xylene                          | 98         | 70-130           |
| TNMOC ref. to Heptane (MW=100)    | Not Spiked |                  |
| Trivioc fel. to neptane (www=100) | Not Spiked |                  |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 100       | 70-130 |
| 1,2-Dichloroethane-d4 | 124       | 70-130 |
| 4-Bromofluorobenzene  | 108       | 70-130 |



#### Client Sample ID: LCSD Lab ID#: 1912185-06AA

#### EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121204 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 12/12/19 10:51 AM

| %Recovery  | Limits                                                                                                              |
|------------|---------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                     |
| 111        | 70-130                                                                                                              |
| 82         | 70-130                                                                                                              |
| 121        | 70-130                                                                                                              |
| 94         | 70-130                                                                                                              |
| 81         | 70-130                                                                                                              |
| 83         | 70-130                                                                                                              |
| 78         | 70-130                                                                                                              |
| 86         | 70-130                                                                                                              |
| 81         | 70-130                                                                                                              |
| 87         | 70-130                                                                                                              |
| 87         | 70-130                                                                                                              |
| 104        | 70-130                                                                                                              |
| 121        | 70-130                                                                                                              |
| 126        | 70-130                                                                                                              |
| 89         | 70-130                                                                                                              |
| 110        | 70-130                                                                                                              |
| 97         | 70-130                                                                                                              |
| 96         | 70-130                                                                                                              |
| 98         | 70-130                                                                                                              |
| 87         | 70-130                                                                                                              |
| 92         | 70-130                                                                                                              |
| 96         | 70-130                                                                                                              |
| Not Spiked |                                                                                                                     |
|            | 82<br>121<br>94<br>81<br>83<br>78<br>86<br>81<br>87<br>104<br>121<br>126<br>89<br>110<br>97<br>96<br>98<br>87<br>92 |

|                       |           | Method |
|-----------------------|-----------|--------|
| Surrogates            | %Recovery | Limits |
| Toluene-d8            | 103       | 70-130 |
| 1,2-Dichloroethane-d4 | 125       | 70-130 |
| 4-Bromofluorobenzene  | 107       | 70-130 |

alscience nvironmental aboratories, inc.

7440 LINCOLN WAY
GARDEN GROVE, CA 92841-1427
TEL: (714) 895-5494 . FAX: (714) 894-7501

AIR CHAIN OF CUSTODY BECORD

| 1010107              |         | AIR CHAIR OF COSTODY RECORD |
|----------------------|---------|-----------------------------|
| TOTOTO               | DATE:   | 12/03/19                    |
|                      | PAGE:   | 1 OF 3                      |
| UMBER:               | P.O. NO |                             |
| Monthly GAC Sampling |         | ···                         |
|                      | _       |                             |

| r                        |                             |                                         | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | X | 3 27 |        | ,  | · · · · · ·  | ,             | -  | , | · · · · · |   |    | (<br>)<br><u>*</u> | 0 7 A                 | 字<br>え                | 05                    |                                                         |                            |                  |              |                    |                                             |                   |                                        |                                                                    |
|--------------------------|-----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---|------|--------|----|--------------|---------------|----|---|-----------|---|----|--------------------|-----------------------|-----------------------|-----------------------|---------------------------------------------------------|----------------------------|------------------|--------------|--------------------|---------------------------------------------|-------------------|----------------------------------------|--------------------------------------------------------------------|
|                          | Relinquish                  | Refinquish                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relinquish                   | 苏 | 4    | ಫ      | 25 | =            | ō             | 9  | 8 | 7         | 6 | ဗၵ | 4                  | 3                     | N                     | -                     | ONITA<br>Pass<br>Pass                                   |                            | S. C.            | <b>D</b> EDD | SPECIAL            | (562) 7                                     | San Diego         | 1322 S                                 | de maximis                                                         |
|                          | Relinquished by: (Sunshire) | Relinquished by: (Signature)            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Relinquished by: (Signature) |   |      |        |    |              |               |    |   |           |   |    |                    | OC_SVE_INF_GAC_120319 | UC_SVE_MID_GAC_120319 | OC_SVE_EFF_GAC_120319 | SAMPLEID                                                |                            | O EVAL INC. IOU. | D            | 24 HR              | (562) 756-8149                              | lego              | 1322 Scott St., Suite 104              | le maximis                                                         |
|                          |                             |                                         | ath the spirite state of a second state of the spirite state of the spir |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 9                     | 19                    | 19                    |                                                         |                            |                  |              | □ 48 HR □ 72 HR    | jdinello@                                   | CA<br>CA          |                                        |                                                                    |
|                          |                             | *************************************** | Sangaran (April Carried Company)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |   |      |        |    |              |               |    |   |           |   |    |                    | SP-INF-GAC            | SP-MID-GAC            | SP-EFF-GAC            | FIELD ID / Point of Collection                          |                            |                  |              | S BAYS 10          | jdinello@demaximis.com                      | . 17              |                                        |                                                                    |
|                          |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |   |      |        |    |              |               |    |   |           |   |    |                    | ۷S                    | SV                    | SV                    | (I) indoor<br>(SV) Soil Vap<br>(A) Ambient              | Air Type                   |                  |              | O 10 DAYS          |                                             | 92106             |                                        |                                                                    |
|                          |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 113332                | 11.7371               | 1L3879                | Canister<br>ID#                                         | Sampli                     |                  |              |                    |                                             |                   |                                        |                                                                    |
| Received by: (Signature) |                             | Received by: (Signature)                | Received by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |   | _    |        |    |              |               |    |   |           |   |    |                    | יר 5                  | 1,                    | 11. 2                 | Canister Flow Canister Size Controller ID# 6L or 1L ID# | g Equipmer                 |                  |              | Kh-110             | PROJECT CC                                  | ciry:<br>Whittier | PROJECT ADDRE                          | CLIENT PROJ                                                        |
| Signature)               |                             | Signature)                              | Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 74722                 | 1                     | 24308                 | Controller                                              | i info                     |                  |              | Kh-110 AZh         | MIACT: Trent                                |                   | PROJECT ADDRESS<br>12520 Whittier Blvd | CLENT PROJECT NAME / NUMBER                                        |
|                          |                             |                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 12/3/2019             | 12/3/2019             | 12/3/2019             | Date                                                    | Start 9                    |                  |              | ( RE               | PROJECT CONTACT: Trent henderson thenderson |                   |                                        | Monthly G/                                                         |
|                          |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 1204                  | (TO3                  | 2001                  | Time<br>(24hr clock)                                    | Start Sampling information |                  |              |                    | enderson@ja                                 | STATE:            |                                        | CLIENT PROJECT NAME / NUMBER: Omega - OU1 SVE Monthly GAC Sampling |
|                          |                             | 1                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                            |   |      |        |    |              |               |    |   |           |   |    |                    | -26                   | -26                   |                       | Canister<br>Pressure<br>("Hg)                           | mation                     |                  |              | 9                  | @jacobandhefner.com                         |                   |                                        | ā                                                                  |
|                          |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |   |      |        |    |              |               |    |   |           |   |    |                    | 12/3/2019             | 12/3/2019             | 9                     | Date                                                    | Stop S                     | 9                |              |                    | com                                         | ZIP:<br>90602     |                                        |                                                                    |
| Date:                    |                             | Date:                                   | South States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |   |      | <      |    | 8            |               |    |   |           |   |    | -                  | 1700                  | 20%                   | 127                   | Time<br>(24hr clock)                                    | Stop Sampling information  |                  |              |                    | 5000                                        |                   | LAB CO                                 | P.O. NO.                                                           |
| 3790000                  |                             | -                                       | 0/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |   | (    | N Moha |    | Custody Seal | $\frac{1}{4}$ | 3  |   |           |   |    | į                  | 7                     | ü                     | - 5                   | Canister<br>Pressure<br>("Hg)                           | mation                     |                  |              |                    | H<br>T                                      |                   | LAB CONTACT OR QUOTE NO.               | ř                                                                  |
| Time:                    |                             | Time:                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |   |      |        | 1  |              |               | 13 |   |           |   |    | ;                  | ×                     | ×                     | ×                     | ΓΟ-15 (Τ.                                               | AL 2.                      | 3)               |              | REQUES             |                                             |                   | NO.                                    |                                                                    |
|                          |                             | 4                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |   |      | Temp/  |    | ntact:       | X             | 3  |   | 1         |   |    |                    |                       | 1                     |                       |                                                         |                            |                  |              | REQUESTED ANALYSES |                                             |                   |                                        |                                                                    |
|                          |                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |   |      | 5      | 1  |              |               |    |   |           |   |    |                    |                       |                       |                       |                                                         |                            |                  |              | SES                |                                             |                   |                                        |                                                                    |

## **ATTACHMENT G**

**Data Validation Repots** 

## Data Quality Assessment Vapor Phase GAC

# OU-1 Full Scale On-Site Soil Remedy, Omega Chemical Superfund Site Fourth Quarter 2019

| SDG Number | Sample ID             | Collection<br>Date | Number<br>of<br>Samples | Analysis<br>Method | QC Reviewed                            | Data Usability                                                                                            |  |  |  |
|------------|-----------------------|--------------------|-------------------------|--------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|
|            | OC_SVE_EFF_GAC_100119 |                    |                         |                    | IC, CCB, Holding Times,                | The TNMOC value reported should not be used as TVOC as                                                    |  |  |  |
| 1910127    | OC_SVE_INF_GAC_100119 | 10/01/2019         | 3                       | TO15               | Il anditions Surragates                | it is not the sum of the reported concentrations. No other qualification of sample results was warranted. |  |  |  |
|            | OC_SVE_MID_GAC_100119 |                    |                         |                    | MB, LCS/LCSD                           | qualification of sample results was warranted.                                                            |  |  |  |
| 1911148    | OC_SVE_EFF_GAC_110419 | 11/04/2019         | 3                       |                    | IC, CCB, Holding Times,                | The TNMOC value reported should not be used as TVOC as                                                    |  |  |  |
|            | OC_SVE_INF_GAC_110419 |                    |                         | TO15               | Sample Receipt Conditions, Surrogates, | it is not the sum of the reported concentrations. No other qualification of sample results was warranted. |  |  |  |
|            | OC_SVE_MID_GAC_110419 |                    |                         |                    | MB, LCS/LCSD                           | qualification of sample results was warranted.                                                            |  |  |  |
| 1912185    | OC_SVE_EFF_GAC_120319 |                    |                         |                    | IC, CCB, Holding Times,                | The TNMOC value reported should not be used as TVOC a                                                     |  |  |  |
|            | OC_SVE_INF_GAC_120319 | 12/03/2019         | 3                       | TO15               | Sample Receipt Conditions, Surrogates, | it is not the sum of the reported concentrations. No other                                                |  |  |  |
|            | OC_SVE_MID_GAC_120319 |                    |                         |                    | MB, LCS/LCSD                           | qualification of sample results was warranted.                                                            |  |  |  |

### **ATTACHMENT H**

# Summary of Indoor Air and Ambient Air Concentrations

(Not Included this Quarter)